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Abstract 
Research on the design and operation of solar stills is relatively advanced, but many works have focused only on the 

description of the individual behavior and operation of experimental apparatus that can be operated under specific 

experimental or natural conditions. In any case, optimization of the systems requires the correlation of several 

parameters by means of mathematical modeling, which can be relatively complex. In this work, appropriate global 

normalization of governing mathematical equations employing dimensionless numbers has been successfully applied 
for the versatile operation of solar stills. In this novel approach, optimized conditions to design efficient solar stills are 

presented and discussed. The results also indicated that the generalized dimensionless model could be able of predicting 

the still performance. The reasons and processes behind the changing trends of the results depend on the simple analysis 

of the corresponding nondimensional number.  

Keywords: Solar still; Desalination; Similarity theory; Dimensional analysis. 
 

Resumo 

A pesquisa sobre o projeto e a operação de destiladores solares está relativamente avançada, mas muitos estudos têm 

focado apenas na descrição do comportamento individual sob condições experimentais específicas. Em qualquer caso, 

a otimização dos sistemas requer a correlação de vários parâmetros por meio de modelagem matemática, o que pode ser 

uma abordagem relativamente complexa. Neste trabalho, a normalização apropriada das equações matemáticas que 
regem os fenômenos de transferência de calor e de massa, foi aplicada para a operação genérica de destiladores solares, 

com o emprego de números adimensionais. Nesta nova abordagem, as condições otimizadas para o projeto de 

destiladores solares são apresentadas e discutidas. Os resultados do estudo também indicaram que o modelo 

adimensional generalizado é capaz de predizer o desempenho das instalações, que pode ser justificado pela interpretação 

dos o números adimensionais correspondentes a dada configuração. 

Palavras-chave: Destilador solar; Dessalinização; Teoria da similaridade; Análise dimensional. 

 

Resumen 

La investigación sobre el diseño y el funcionamiento de destiladores solares está relativamente avanzada, pero muchos 

trabajos se han centrado únicamente en la descripción del comportamiento individual y el funcionamiento de aparatos 

experimentales que operan pueden funcionar en condiciones experimentales o naturales específicas. En cualquier caso, 

la optimización de los sistemas requiere la correlación de varios parámetros mediante modelos matemáticos, que pueden 
resultar relativamente complejos. En este trabajo, se ha aplicado con éxito la normalización global apropiada de las 

ecuaciones matemáticas que rigen en el fenómeno, con el empleo de números adimensionales, para la operación 

genérica de los destiladores solares. En este enfoque novedoso, se presentan y discuten las condiciones optimizadas 

para diseñar destiladores solares eficientes. Los resultados también indicaron que el modelo adimensional generalizado 
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podría predecir el rendimiento estático. Las razones y procesos detrás de las tendencias cambiantes de los resultados 

dependen del simple análisis del número adimensional correspondiente. 

Palabras clave: Destilador solar; Desalinización; Teoría de la similitude; Análisis dimensional. 

 

1. Introduction 

Solar stills are exceptional devices for producing potable water, particularly in rural communities, and enable solar-

powered desalination based on principles that are essentially simple, whereby solar energy directly effects evaporation of water 

(Elango et al., 2015; Mohan et al., 2019; Rufuss et al., 2016). In special, single-effect solar stills consist of a basin that 

accommodates brackish water and is covered by one or two sloping covers. The water in the basin is heated by the incident solar 

radiation transmitted through the transparent cover, and then evaporates, condenses and flows across the inside of the cover, 

being finally collected on the opposite side. According to Agrawal and Rana (2019), Gnanaraj and Velmurugan (2019), Tripathi 

and Tiwari (2006), and Velmurugan and Srithar (2011), the daily productivity of conventional solar still is in the range of 2–5 kg 

m–2. 

Several review papers have been reported in the literature focusing on experimental and numerical investigations with 

solar stills (Ahmed & Alfaylakawi, 2012; Ahsan et al., 2012; Al-Hayeka & Badran, 2004; Al-Hinai et al., 2002; Al-Karaghouli 

et al., 2009; Arunkumar et al., 2012; El-Bahi & Inan, 1999; El-Ghonemy, 2012; Elkader, 1998; Eze &  Ojike, 2012; Karagiannis 

& Soldatos, 2008; Panchal & Shah, 2011; Radhwan, 2005; Rajan et al., 2014; Rajaseenivasan et al., 2013; Rajaseenivasan et al., 

2014; Sivakumar et al., 2013; Varun, 2010; Velmurugan et al., 2008; Xiao et al., 2013). However, most of these investigations 

consider only the individual rather than the global behavior of a conventional solar still. Muftah et al. (2014) show that the 

distillation productivity of a solar still is significantly affected by climatic, operational and design parameters. 

Many of such reports in the literature have demonstrated that the productivity and performance of solar stills depend on 

parameters like solar radiation, wind velocity, basin water depth, temperature difference between the cover plate and water, cover 

thickness, cover inclination, bottom insulation, and geometry of the equipment (Ayoub et al., 2015; Dunkle, 1961; Edalatpour et 

al., 2016; Gnanaraj & Velmurugan, 2019; Khalifa & Hamood, 2009; Kumar et al., 2015; Mowla & Karimi, 1995; Nguyen et al., 

2017; Omara et al., 2017; Rahbar et al., 2015; Raj and Manokar, 2017; Rashidi et al., 2017; Rufuss et al., 2016; Sarkar et al., 

2017; Selvaraj & Natarajan, 2018; Tayeb, 1992).  

As properly pointed out by Rufuss et al. (2016), “the goal of implementing solar stills at commercial scale remains 

elusive mainly because of their limited output”, and “for successful implementation, researchers continue to investigate a wide 

range of innovations in solar stills, based on operating parameters, geometry, system configuration and materials”. Despite the 

numerous, extensive studies on the design and performance of solar stills, the necessity to comparatively elucidate analytical 

results of individual experiments carried out under different meteorological, operational and geometric conditions is evident 

(Mashaly, 2015; Tsilingiris, 2009). The use of dimensional analysis is a relatively good tool to accomplish this. 

There are many advantages to using solar stills in water treatment processes, but these are hindered by insufficient 

knowledge on the global behavior of such equipment. Therefore, the present paper aims to present a dimensionless parametric 

study on the performance of a single-effect solar still and to determine the influence of each characteristic parameter on its design 

and optimization. 

 

2. Similarity Theory of Solar Stills 

In chemical engineering, mechanical engineering, fluid mechanics, and heat and mass transfer problems, the use of 

dimensionless (or nondimensional) numbers, such as the Reynolds number, Nusselt number and Biot number, is very common 

(Bergman, Lavine & Incropera, 2011; Çengel a& Boles, 2008; Welty et al., 2007). According to Kunes (2012), the 
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“dimensionless quantity expresses either a simple ratio of two dimensionally equal quantities (simple) or that of dimensionally 

equal products of quantities in the numerator and in the denominator (composed)”.  

Ruzicka (2008) also proposed that dimensionless numbers that express or refer to specific criteria, groups, products, 

quantities, ratios or terms can be given as algebraic expressions or fractions, whose numerator and denominator are powers of 

physical quantities, being the total physical dimension equal to unity. The dimensional analysis of mathematical equations (or 

systems of equations) by inspection is also known as “normalization” or “nondimensionalization”, and constitutes a very useful 

technique in engineering studies that can be undertaken with the use of dimensionless groups (Bergman, Lavine & Incropera, 

2011; Çengel & Boles, 2008;  Ruzicka, 2008; Welty et al., 2007). 

The main purpose of dimensional analysis is to reduce the number of variables involved in a mathematical model by 

introducing independent dimensionless groups of variables (or dimensionless parameters). The nondimensionalization (or 

normalization) is based in inspectional analysis and previous selection of dimensionless groups, using the Buckingham π theorem 

(Bergman, Lavine & Incropera, 2011; Buckingham, 1914; Çengel & Boles, 2008; Ruzicka, 2008; Welty et al., 2007; Yarin, 

2012). The developed dimensional analysis allows to: (a) generate nondimensional parameters that can help in the design of 

physical and/or numerical experiments, and (b) obtain scaling laws so that the prototype performance (sizing) can be predicted 

from the model performance.  

In this section, the primary theory of temperature-distribution conversion is described, followed by the conversion of 

the withdrawn-water temperature. Finally, the similarity theory is verified. The simplified schematic view of solar still considered 

is shown in Figure 1.  

 

Figure 1 – Schematic view of a solar still.  

Source: Authors. 

 

2.1 Dimensional Mathematical Modeling  

In order to simplify the mathematical modeling analysis, the following assumptions are considered:  

I. The level of water in the basin is maintained at a constant level;  

II. Film-type condensation occurs at the glass trough;  

III. The heat capacity of the cover is negligible;  
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IV. There is no vapor leakage in the still;  

V. There is no temperature gradient across the glass cover thickness, nor throughout the water sample used in the studies.  

VI. The system operates in a quasi-static condition.  

 

2.1.1 Heat Transfer on the Cover Surface  

According to Afrand et al. (2016), Al-Hinai et al. (2002), Elango et al. (2015), Madhlopa and Johnstone (2009), Mowla 

and Karimi (1995), Nguyen et al. (2017), Sarkar et al. (2017), Selvaraj and Natarajan (2018), Varun (2010), and Xiao et al. 

(2013), the energy balance on the cover of the solar still can be represented by Equation 1.  

 

𝛼𝑐𝐼𝑠𝐴𝑐 + ℎ𝑡𝑤(𝑇𝑤 − 𝑇𝑐)𝐴𝑏 = ℎ1𝑔(𝑇𝑐 − 𝑇𝑎)𝐴𝑐           (1) 

 

The first term refers to the radiated heat on the cover. The second term refers to heat transfer between the water surface 

and cover surface. And finally, the right portion represents the heat lost by the cover to the environment, involving convection 

and thermal radiation.  Where: 

 

𝛼𝑐 = Absorptivity of the cover [J kg-1];  

𝐼𝑠 = Solar radiation [W m-2]; 

𝐴𝑐 = Cover surface area [m2]; 

𝐴𝑏 = Area of the basin of the still, [m²]; 

ℎ𝑡𝑤 = Total heat transfer coefficient from the water surface to the cover surface [W m-2 K-1]; 

𝑇𝑤 = Basin water temperature [K]; 

𝑇𝑐 = Cover temperature [K]; 

𝑇𝑎 = Ambient temperature [K]; 

ℎ1𝑔 = Convective heat transfer coefficient between the cover and the surroundings [W m-2 K-1]. 

 

The total heat transfer coefficient from the water surface to the cover surface is given by  ℎ𝑡𝑤 = ℎ𝑟𝑤 + ℎ𝑐𝑤 + ℎ𝑒𝑤 

(Duffie and Beckman, 1991; Elango et al., 2015; Tiwari and Sahota, 2017). The expressions for Convective (hcw), thermal 

radiative (hrw) and evaporative (hew) heat transfer coefficient from the water mass in the basin to the condensing cover could be 

calculated from analyses reported by Shawaqfeh and Farid (1995), Tiwari et al. (2009), Tsilingiris (2010), Tsilingiris (2011), 

Tsilingiris (2012), and Voropoulos et al. (2000). 

 

2.1.2 Heat Transfer in the Water in the basin  

The heat energy is absorbed by the basin water due to fraction of transmitted solar radiation striking on it and it is 

absorbed by water. The absorbed heat energy is consumed in three ways, a) one part is stored in water due to its specific heat; b) 

part of heat energy is transferred from water surface to the glass cover by convection, evaporation and radiation, and c) remaining 

heat is lost from basin liner to atmosphere through the bottom and sides of the solar still by conduction and convection (Agrawal 

et al., 2017; Al-Hinai et al., 2002; Madhlopa & Johnstone, 2009; Mowla & Karimi, 1995; Nguyen et al., 2017; Rahbar et al., 

2015; Sarkar et al., 2017; Selvaraj & Natarajan, 2018; Varun, 2010; Xiao et al., 2013).  

 

𝛼𝑤 = Absorptivity of the water; 

𝑐𝑝𝑤  = Specific heat of water [J kg-1 K-1]; 



Research, Society and Development, v. 10, n.1, e26910111304, 2021 
(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v10i1.11304 

 

 

5 

𝑚𝑤 = Mass of water in the basin [kg]; 

𝑈𝑠 = Heat loss coefficient from the insulation [W m-2 K-1]. 

 

𝛼𝑤(1 − 𝛼𝑐)𝐼𝑠𝐴𝑏 = 𝑚𝑤𝑐𝑝𝑤[𝑑𝑇𝑤
𝑑𝑡

] + ℎ𝑡𝑤(𝑇𝑤 − 𝑇𝑐)𝐴𝑏 +  𝑈𝑠(𝑇𝑤 − 𝑇𝑎)𝐴𝑏    (2) 

 

The term on the left-hand side of Equation 2 refers to the amount of heat radiated to the surface of the water. The first 

term on the right-hand side refers to heat stored in the water. The second term on the right-hand side refers to the heat transferred 

between the water surface and the cover surface. Finally, the last term on the right represents heat loss from the insulation. The 

adopted mathematical model is quasi-steady-state approximation and Equation 2 is in dynamic mode, because the energy stores 

in the basin, and there is a variation in the water temperature. The heat capacities of the glass cover, the absorbing material, and 

the insulation are negligible. 

 

2.1.3 Condensate Water Mass Flow  

The mass flow of condensate water is expressed by Equation 3, which is obtained by calculating the amount of heat that 

flows from the brine to the cover by evaporation: 

 

𝑚̇𝑒𝑤 =
𝐴𝑐ℎ𝑒𝑤(𝑇𝑤−𝑇𝑐)

ℎ𝑓𝑔
          (3) 

 

where ℎ𝑓𝑔 is the latent heat of vaporization [J∕kg]. 

 

2.1.4 Performance of Solar still  

The efficiency of a solar still is defined as the ratio of the heat transfer in the still by evaporation-condensation to the 

radiation on the still. The cumulative efficiency of solar still is mathematically expressed by: 

 

𝜂𝑇 =
∑ 𝑚̇𝑒𝑤ℎ𝑓𝑔

∑(𝐼𝑠𝐴𝑐)
           (4) 

 

There is a close agreement between the theoretical results and experimental data for a conventional solar still, using this 

classical dimensional mathematical model (Elango et al., 2015; Gnanaraj and Velmurugan, 2019).  

 

2.2 Normalized Mathematical Modeling  

Equations 1, 2, 3 and 4 can be normalized to generate the following set of equations: 

 

𝐺∗

𝐶𝑤𝑐
∗ + 𝐵𝑖𝑤𝜃𝑤𝑐 = 𝐵𝑖𝑤𝑖𝑛𝑑𝐺∗𝜃𝑐𝑎         (5) 

 

1

𝐶𝑤𝑤
∗ = 𝑍𝐻

𝑑𝜃𝑤

𝑑𝐹𝑜𝑤
+ 𝐵𝑖𝑤𝜃𝑤𝑐 + 𝐵𝑖𝐿𝑜𝑠𝑠𝜃𝑤𝑎        (6) 

 

𝜁 = 𝐺∗𝜃𝑤𝑐           (7) 
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𝜂𝑇 =
𝜁𝐵𝑖𝑒

𝑤

𝐺∗ 𝐶𝑤𝑐
∗ 𝛼𝑐           (8) 

 

The normalized equations, which represent the process of evaporation and condensation of water in the solar still, can 

be written as a function of six (6) dimensionless groups, defined by equations 9 to 14. These parameters can properly characterize 

the phenomenon and can be used in more general analytical processes, thereby providing ideal conditions for the design and 

optimization of the equipments. 

 

𝑍𝐻 ≡
𝐻𝑏

𝐻𝑏̅̅ ̅̅
            (9) 

 

𝐺∗ ≡
𝐴𝑐

𝐴𝑏
            (10) 

 

𝐶𝑤𝑐
∗ ≡

𝑘𝑤(𝑇𝑤𝑖−𝑇̅𝑎)/𝐻𝑏̅̅ ̅̅

𝛼𝑐𝐼𝑠
          (11) 

 

𝐵𝑖𝐿𝑜𝑠𝑠 ≡
𝑈𝑠𝐻𝑏̅̅ ̅̅

𝑘𝑤
           (12) 

 

𝐵𝑖𝑤𝑖𝑛𝑑 ≡
ℎ1𝑔𝐻𝑏̅̅ ̅̅

𝑘𝑤
           (13) 

 

𝐹𝑜𝑤 ≡
𝛼𝑡

𝐻𝑏̅̅ ̅̅ 2           (14) 

 

The Areas Ratio Number (G*) is a geometric dimensionless group that represents the ratio between the area of the cover 

surface (Ac) and that of the basin water (Ab). It is a useful parameter to evaluate the effect of changing the area of the cover 

surface. 

The dimensionless Water Basin Number (ZH) which represents the ratio between the thickness of the water film (Hb) in 

the basin of the solar still and a “reference” water depth (𝐻𝑏
̅̅̅̅  = 0.01 m), which is a more common value used in similar experiments 

with this type of system, according to the scientific community (Al-Hinai et al., 2002; Garg and Mann, 1976; Khalifa and 

Hamood, 2009; Nguyen et al., 2017; Rahbar et al., 2015; Sarkar et al., 2017; Selvaraj and Natarajan, 2018; Tiwari and Tiwari, 

2007; Xiao et al., 2013; Varun Raj and Manokar, 2017). 

The dimensionless Solar Radiation Number (𝐶𝑤𝑐
∗ ) represents the amount of heat transferred by conduction in the basin 

water having solar energy as the main reference. And it is related to the Jakob Number (Ja), and unnamed dimensionless groups 

𝜋𝑎 and 𝜋𝑏. 

 

𝐶𝑤𝑐
∗ ≡ 𝐽𝑎𝜋𝑎𝜋𝑏             (15) 

 

The Jakob number (Ja) is the ratio between the maximum sensible energy absorbed by the liquid (vapor) and the latent 

energy absorbed by the liquid (vapor) during evaporation/condensation. In many applications, the sensible energy is much lower 

than the latent energy, and Ja is accordingly low, as pointed out by Bergman, Lavine and Incropera (2011), Çengel and Boles 

(2008), and Welty et al., (2007), a “very small Jacob number may be thought of as a very large value of the latent heat, which 

will tend to limit the volume change of the bubbles due to evaporation or condensation”. The Jakob number can be expressed by 
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Equation 16: 

 

𝐽𝑎 ≡
𝑐𝑝𝑤(𝑇𝑤𝑖−𝑇̅𝑎)

ℎ𝑓𝑔
           (16) 

 

The mathematical representations of the unnamed dimensionless groups 𝜋𝑎 and 𝜋𝑏 are given by Equations 17 and 18: 

 

𝜋𝑎 ≡
𝜌𝑤 ℎ𝑓𝑔

3
2⁄

𝛼𝑐𝐼𝑠
           (17) 

 

𝜋𝑏 ≡
∝

 𝐻𝑏̅̅ ̅̅ ℎ𝑓𝑔
1

2⁄
           (18) 

 

where 𝜌𝑤 is the specific mass of water [kg m-3]. The unnamed dimensionless group 𝜋𝑎 establishes the ratio between the 

energy required for phase change and the corresponding heat transfer rate, and 𝜋𝑏 relates the water thermal diffusivity () and 

the latent heat of vaporization.   

The heat transfer Biot Number (Bi) may be interpreted as a ratio of thermal resistances, and it is a dimensionless 

representation of whether the internal conduction or the external heat transfer is dominating the process while it occurs (Bergman, 

Lavine and Incropera, 2011; Çengel and Boles, 2008; and Welty et al., 2007). Therefore, the Loss Biot Number (BiLoss) could be 

interpreted as a ratio between the reference conductive resistance within a water body and the thermal loss from the water basin 

to the environment. It is a measure of the heat loss to the environment.  

Similarly, the Wind Biot Number (BiWind) is the ratio between the reference conductive resistance within a water body 

in the solar still basin and the heat transferred by convection and thermal radiation from the cover surface to the environment.  

Finally, the Fourier Number (Fow) represents the dimensionless time required to change the water temperature in the 

basin of the solar still, and can be calculated from the thermo-physical properties of the material and its characteristic dimensions. 

This parameter controls the thermal transient behavior.  

The five response dimensionless groups that must be used to enhance the performance of the solar still are the following:  

 

i. Dimensionless temperature difference between water in the basin and ambient environment (wa);  

ii. Dimensionless temperature difference between water and cover (wc);  

iii. Dimensionless condensate mass flow ();  

iv. Efficiency (T), and 

v. Water Biot Number (Biw).  

 

The dimensionless temperature differences are defined with Equations 19 to 22. The dimensionless condensate mass 

flow (z) is defined by Equation 23 and the Water Biot Number can be calculated with Equation 24. 

 

𝜃𝑤𝑐 ≡
(𝑇𝑤−𝑇𝑐)

(𝑇𝑤𝑖−𝑇̅𝑎)
            (19) 

 

𝜃𝑤 ≡
(𝑇𝑤−𝑇̅𝑎)

(𝑇𝑤𝑖−𝑇̅𝑎)
            (20) 
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𝜃𝑐𝑎 ≡
(𝑇𝑐−𝑇𝑎)

(𝑇𝑤𝑖−𝑇̅𝑎)
           (21) 

 

𝜃𝑤𝑎 ≡
(𝑇𝑤−𝑇𝑎)

(𝑇𝑤𝑖−𝑇̅𝑎)
           (22) 

 

𝜁 ≡
𝑚̇𝑒𝑤ℎ𝑓𝑔

ℎ𝑒𝑤𝐴𝑏(𝑇𝑤𝑖−𝑇̅𝑎)
          (23) 

 

𝐵𝑖𝑤 ≡
𝐻𝑏ℎ𝑡𝑤

𝑘𝑤
= 𝐵𝑖𝑟

𝑤𝐵𝑖𝑐
𝑤𝐵𝑖𝑒

𝑤         (24) 

 

where: 𝑇𝑤𝑖is the reference basin water temperature [K]; and 𝑇̅𝑎is the reference ambient temperature [K]. The 

dimensionless condensate mass flow (z) is the nondimensional representation of the yield of the solar still. The condensate mass 

flow depends on many parameters, including the performance of solar stills, according to Equation 8. The dependence of 

performance on water depth is discussed in section 4. 

The Water Biot Number (Biw) shows the ratio between the reference conductive resistance within a water body and the 

convective-radiative-evaporative resistance outside the water body. Three parameters contribute to the final value of Biw, namely 

the thermal radiation, convection and evaporation, which respectively define the Radiative Water Biot Number (𝐵𝑖𝑟
𝑤), the 

Convective Water Biot Number (𝐵𝑖𝑐
𝑤), and the Evaporation Water Biot Number (𝐵𝑖𝑒

𝑤). Equations 25-27 express these 

contributions. 

 

𝐵𝑖𝑟
𝑤 ≡

ℎ𝑟𝑤𝐻𝑏̅̅ ̅̅

𝑘𝑤
           (25) 

 

𝐵𝑖𝑐
𝑤 ≡

ℎ𝑐𝑤𝐻𝑏̅̅ ̅̅

𝑘𝑤
           (26) 

 

𝐵𝑖𝑒
𝑤 ≡

ℎ𝑒𝑤𝐻𝑏̅̅ ̅̅

𝑘𝑤
           (27) 

 

In dimensionless parametric studies, it is sufficient to consider that internal and external heat transfer coefficients could 

be represented by average values (for example, within one day). The mathematical study permits, if necessary, to adopt 

dimensionless numbers that are different for each hour. However, in this paper, this is not considered, because one important 

focus is only on the generalization of the results. And, for this study, it is not necessary to calculate (or estimate) the values for 

heat transfer coefficients. The idea is to consider a universal number, such as the Reynolds Number or the Stanton Number. In 

this analysis, the Wind Biot Number and the Water Biot Number have proven to be representative for the distillation process. 

 

3. Implementation 

The resulting dimensional and nondimensional algebraic and differential equations have been numerically solved with 

an adequate iterative method for temporary discretization. A computer program has been developed in the application software 

Engineering Equation Solver – EES (Dash, 2014), using the implemented Explicit-Euler-Method and/or the Crank-Nicholson-

Method and self-written functions. The main purpose of this simulation was to carry out a nondimensional parametric analysis 

of a classic solar still in order to determine the influence of various dimensionless quantities on the thermal performance of a 
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solar still. 

In this work, a representative database of weather data for the 1-year duration, known as Typical Meteorological Year 

(TMY), has been employed. Kalogirou (2003) defines a TMY as a year which sums up all the climatic information characterizing 

a period as long as the average life of the system. This database is an appropriate meteorological set of data for long-term 

predictions of the annual performance of solar energy systems (Argiriou et al., 1999; Martins et al., 2012; Zhou et al., 2010).  

 

4. Results and Discussion 

In the present analysis, the similarity theory of the solar still has been developed and eleven (11) global dimensionless 

groups (characteristic numbers) have been derived, by normalizing the governing equations. The performance of the system, 

which ultimately determines the efficiency of the condensate water to flow, is a unique function of these parameters. The basis 

of the similarity theory of the solar still is therefore established herein. The similarity solutions could be used in the analysis of 

the performance of the solar still and when sizing or designing the system, using some important design rules.   

Besides the Fourier Number, the characteristic parameters to be considered in the parametric analysis are ZH, G*, Cwc*, 

BiLoss and BiWind. The response dimensionless groups that ensure the solar still performance are qwa, qwc, z, hT, and Biw. To analyze 

the results, numerical computation has been carried out, using the method described in the previous section for fixed and/or 

median governing parameters. 

According to Figure 2, ZH has significant effects on the performance of the solar still. By increasing the water depth in 

the basin, the efficiency and the dimensionless condensate mass flow are decreased. This parameter controls the quantity of mass 

in the basin during the evaporation process and the conductive thermal resistance in the basin, according to mathematical 

modeling for distillation processes.  

 

Figure 2 – Effect of water depth in the basin (ZH) on the efficiency of a solar still.  

 

Source: Authors. 
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This result indicates that the relative water depth is the most important parameter in the analysis of a solar still. It is 

possible to observe, for example, that from ZH = 1 to ZH » 10 the efficiency decreases from 50 % to about 45 %, and from ZH = 

1 to ZH » 90, the efficiency decreases from 50 % to about 10 %. This result is consistent with several experiments and simulation 

results (Garg and Mann, 1976; Al-Hinai et al., 2002; Tiwari and Tiwari, 2007; Xiao et al., 2013; Rahbar et al., 2015; Nguyen et 

al., 2017; Sarkar et al., 2017; Selvaraj and Natarajan, 2018; Varun Raj and Manokar, 2017).  

In addition, Figure 3 shows the profiles of the efficiencies and the dimensionless temperature differences between water 

in the basin and ambient environment for ZH = 1, 11, 50 and 90. For lower ZH values, higher dimensionless temperature 

differences between water in the basin and ambient environment are affected, and the efficiencies are consequently higher. Even 

in the case of ZH = 1, which means that the water depth is very low (= 0.01 m), the efficiency is slightly dependent on the 

meteorological data (solar radiation, ambient temperature and wind velocity), and it is not much affected by the Fourier number. 

 

 

Figure 3a – Motion of the efficiency and dimensionless water temperature difference, for ZH = 1. 

 

Source: Authors. 
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Figure 3b – Motion of the efficiency and dimensionless water temperature difference, for ZH = 11. 

 

Source: Authors. 

 

 

Figure 3c – Motion of the efficiency and dimensionless water temperature difference, for ZH = 50. 

 

Source: Authors.  
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Figure 3d – Motion of the efficiency and dimensionless water temperature difference, for ZH = 90. 

 

Source: Authors. 

 

Therefore, it is possible to conclude that, in order to reduce the influence of meteorological conditions during a typical 

experimental procedure in any given day and to obtain the highest efficiency, it is necessary to design a solar still with as low a 

water depth as possible. It can be seen that the efficiency varies from 45 % to 54 % for ZH = 1 (Figure 3a); from 24 % to 40 % 

for ZH = 11 (Figure 3b); from 5 % to 20% for ZH = 50 (Figure 3c); and from 4 % to 14 % for ZH = 90 (Figure 3d). It is therefore 

desirable to construct the dimensionless water basin as small as possible. 

Figures 4 and 5 show that the efficiency increases with increasing G* and increasing incident solar radiation (related to 

FIT). This is consistent with the physics of the phenomena and similar reports (Garg and Mann, 1976; Al-Hinai et al., 2002; 

Tiwari and Tiwari, 2007; Xiao et al., 2013; Rahbar et al., 2015; Nguyen et al., 2017; Sarkar et al., 2017; Selvaraj and Natarajan, 

2018; Varun Raj and Manokar, 2017). The factor FIT being equal to 1.2 means that the real solar radiation pattern from TMY 

was “hypothetically” multiplied by 1.2, and the Dimensionless Solar Radiation Number (𝐶𝑤𝑐
∗ ) is also divided by the same factor.  

It is very interesting to observe (Figure 4) that, in order to increase the areas ratio, it is necessary to design a solar still 

with a cover area that is higher than the basin area. It is recommended to design the solar still with different geometries than a 

traditional box (as in a single basin – single slope solar still). Examples of such different configurations involve a more inclined 

cover surface, a double-slope cover, a corrugate cover, a semi-spherical cover, or even a wick-type solar still, among others.  

Figure 5 shows the importance of the solar radiation (Dimensionless Solar Radiation Number) on the still performance. 

The solar still efficiency is further increased when the basin is designed with a blackened baseliner and when increasing the 

incident solar radiation by using reflective materials. Some researchers suggest that basin materials like rubber and gravel can 

enhance absorption, storage and evaporation effects. Charcoal, black gravel or rock could be used according to Sarkar et al. 

(2017). Weather parameters, such as solar radiation, ambient temperature and wind velocity, can be uncontrollable as they depend 

on nature, on the time along a day and on the localization.  

However, mixing dyes (like black naphthylamine dye) with water can help the water to absorb most of the heat from 

solar radiation, thereby increasing the distillate productivity (Abu-Hijleh, 2003; Rajvanshi, 1981). This is a direct result of 

changes in the water emissivity and absorptivity. Nijmeh et al. (2005) studied the enhancement of water productivity, using 

dissolved salts such as potassium permanganate and potassium dichromate, violet dye and charcoal. The addition of the dissolved 

salts is a novel method in improving the performance of solar stills. 
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Figure 4 – Effect of areas ratio (G*) and the Fourier number on the on efficiency. 

 

Source: Authors. 

 

 

Figure 5 – Effect of increase in Dimensionless Solar Radiation Number (𝐶𝑤𝑐
∗ ) and the Fourier number on the efficiency. 

 

Source: Authors. 

 

It can be seen in Figure 6a that lower loss Biot numbers (lower heat loss from the solar still) increase the efficiency. 

Even in the case of 1/BiLoss = 16, which means that there is practically no insulation in the solar still, the efficiency is the lowest. 

Figure 6a also shows that equilibrium is finally reached when 1/BiLoss is higher than 81. In general, cotton, clothes, rubber, glass 

wool, mica sheets and wood, for example, can be good insulation materials (Sarkar et al., 2017). Al-Hinai et al. (2002) have 

shown that the optimal insulation thickness should lie between 0.09 and 0.13 m. 

When 1/BiLoss is larger than 81, the resulting high dimensionless temperature difference between water in the basin and 

ambient environment (Figure 6b) will cause a relative increase in the dimensionless condensate mass flow (Figure 6c) and 

consequently higher efficiencies are obtained (Figure 6a). The results show that it is recommendable to adopt, in general, 1/BiLoss 

higher than 81 to minimize heat losses to the surroundings.  

This saturation phenomenon on the temperature difference, mass flow and efficiency could be attributed to the balance 

between the heat transfer in the water by conduction and the thermal resistance related to the insulation. 
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Figure 6a – Effects of the Loss Biot number (BiLoss) and the Fourier number on the efficiency of a solar still. 

 

Source: Authors. 

 

 

 

Figure 6b – Effects of the Loss Biot number (BiLoss) and the Fourier number on the dimensionless water temperature profiles. 

  

Source: Authors. 
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Figure 6c – Effects of the Loss Biot number (BiLoss) and the Fourier number on the dimensionless condensate mass flow. 

 

Source: Authors. 

 

Figure 7 represents typical days for summer at Fortaleza, Brazil (DMS latitude and longitude coordinates are, 

respectively: 3°43'1.99"S, 38°32'35.02"W). Considering the weather conditions of Figure 7, the variation of the efficiency and 

the dimensionless condensate mass flow with increasing Wind Biot number (BiWind) is represented in Figures 8a and 8b, 

respectively. These results show that, by increasing the Wind Biot Number (in other words, increasing the wind velocity), the 

difference in temperature between the water and the cover surface is increased, and consequently the solar still performance is 

enhanced. The same conclusion can be made from the data depicted in Figures 9a, 9b, 9c and 9d, for the same range of the 

Fourier number. It must be reminded that the Wind Biot Number is a function of the convective heat transfer coefficient, which 

depends on the wind velocity.  

In summary, the results shown in Figures 2 through 9 demonstrate that the dimensionless temperature difference 

between water and cover (wc); the dimensionless condensate mass flow (), the efficiency (T) and the Water Biot Number (Biw) 

change gradually with the Fourier number, and reach maximal values in the afternoon. This is due to the fact that the absorbed 

energy excels the heat losses from the solar still. This is clearly indicated in Figures 8a, 8b, 9a, 9b, 9c and 9d.  

The variation of the dimensionless condensate mass flow (or, in a dimensional form, the water condensate mass flow 

rate) with a “hypothetical” increase in the daily wind profile by a factor FWind is also highlighted. An increase factor of 1.2 implies 

an increase of the same magnitude in the Wind Biot Number (BiWind). Figure 8b clearly indicates that the best performance was 

obtained close to noon. The value of  is about 8, for a wind real pattern from TMY data, best viewed in Figure 9a; also,  is 

about 5, for a reduction by a factor of  25 %, and  is about 11 for an increment of 500 %. 
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Figure 7 – Meteorological Data: solar radiation and ambient temperature. 

 

Source: Authors. 

 

 

Figure 8a – Effects of the Wind Biot number (BiWind) and the Fourier number on the efficiency of a solar still. 

 
Source: Authors. 
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Figure 8b – Effects of the Wind Biot number (BiWind) and the Fourier number on the dimensionless condensate mass flow. 

 

Source: Authors. 

 

 

Figure 9a – Effects of the Fourier number on the efficiency and dimensionless water condensate mass flow for ZH = 11. 

 

Source: Authors. 
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Figure 9b – Effects of the Fourier number on the efficiency and dimensionless temperature difference between water and ambient 

environment for ZH = 11. 

 
Source: Authors. 

 

Figure 9c– Effects of the Fourier number on the efficiency and dimensionless temperature difference between water and cover 

for ZH = 11. 

 
Source: Authors. 

 

According to Equation 7, it is interesting to point out that, if G* equals 1 (the cover area is equal to the basin area), the 

value of the dimensionless condensate mass flow equals the dimensionless temperature difference between water and cover. 

Figures 9a and 9c should be compared. It is possible to estimate the condensate mass flow from the temperature difference 

between the water in the basin and the cover temperature.  
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Figure 9d– Effects of the Fourier number on the efficiency and the Water Biot Number (Biw) for ZH = 11. 

 

Source: Authors. 

 

5. Conclusion 

An appropriate global normalization of governing equations for a solar still is described and implemented in the present 

paper. Dimensionless numbers are of key importance in parametric analyses of engineering problems, mainly in fluid mechanics, 

heat and mass transfer studies. Dimensional analysis is an indispensable tool in this process and is used with three purposes, 

namely classification, measurement and simplification of physical laws. In this investigation, an optimization procedure 

involving 11 dimensionless groups which characterize the thermal performance of a passive solar still, including the Fourier 

Number, has been successfully proposed. The design of solar still systems plays an important role in the thermal performance. 

They are useful to understand the similarity among problems belonging to the same broad class. Thermal modeling helps 

designing solar stills by considering the best governing operating parameters.  

This global approach focused on presenting five (5) characteristic parameters that are considered in parametric analyses: 

the Dimensionless Water Basin Number (ZH); the Areas Ratio Number (G*); the Dimensionless Solar Radiation Number (𝐶𝑤𝑐
∗ ); 

Loss Biot Number (BiLoss); and Wind Biot Number (BiWind). The results showed that it is desirable to construct dimensionless 

water basin number, ZH, “as small as possible” (Garg and Mann, 1976; Phadatare and Verma, 2007; Tiwari and Tiwari, 2007), 

which might be corresponding to the water deep of 10 cm or lower (Sarkar et al., 2017). 

 It is also very interesting to observe that, in order to increase the areas ratio, it is sufficient to design a solar still with a 

higher cover area than the basin area. The nondimensional analysis shows the importance of the solar radiation (Dimensionless 

Solar Radiation Number) on the still performance. The results also demonstrated that it is generally recommendable to adopt 

1/BiLoss larger than 81 to minimize heat losses to the surroundings. Furthermore, when increasing the Wind Biot Number (or the 

wind velocity), the difference in temperature between the water and the cover surface is enhanced, and consequently the solar 

still performance is increased, as indicated by improved efficiency and dimensionless condensate mass flow. It is possible to 

estimate the value of the dimensionless condensate mass if the dimensionless temperature difference between water and cover is 

known. This is an important contribution of this analytical work. With the similarity theory that has been applied, experiments 

on solar stills could be conducted in a broader set of conditions, regardless of the geometric and/or operational parameters of the 

model, which can or cannot be consistent with those of the prototype. Such versatility greatly helps improving the efficiency of 

the equipment. 
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The results also indicated that the generalized dimensionless model could be able of predicting the still performance. 

The reasons and processes behind the changing trends of the results depend on the simple analysis of the corresponding 

nondimensional number.  

The robustness of the model was ensured by such parameters as the dimensionless temperature difference between water 

in the basin and ambient environment (wa), the dimensionless temperature difference between water and cover (wc), the 

dimensionless condensate mass flow (), and the efficiency (T), in agreement with published reports. The generalized 

dimensionless model is simple and considers all geometric, operational and meteorological parameters by processing only four 

equations. Therefore, it is useful in the design and optimization of solar stills, with several technological applications, particularly 

in water treatment and energy plants.  

This work was successful in introducing, applying and discussing a novel approach for the analysis of the behavior and 

performance of solar stills to the scientific and academic communities. The proposal to go beyond the restricted description of 

individual behaviors that have been reported is highlighted, with the optimization of experimental conditions and implementation 

of an appropriate global normalization employing dimensionless numbers. 
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Nomenclature  

Dimensional variable:  

𝐴𝑏 = Area of the basin of the still, [m²] 

𝐴𝑐 = Cover surface area [m2] 

 𝑐𝑝𝑤  = Specific heat of water [J kg-1 K-1] 

ℎ𝑓𝑔  = Latent heat of vaporization [J∕kg] 

ℎ1𝑔 = Convective heat transfer coefficient between the cover and the surroundings [W m-2 K-1] 

ℎ𝑡𝑤 = Total heat transfer coefficient from the water surface to the cover surface [W m-2 K-1] 

𝐻𝑏
̅̅̅̅ = Reference water depth (= 0.01 m) 

𝐼𝑠 = Solar radiation [W m-2] 

 𝑚𝑤 = Mass of water in the basin [kg] 

𝑇𝑎 = Ambient temperature [K] 

𝑇̅𝑎 = Reference ambient temperature [K] 

𝑇𝑐 = Cover temperature [K] 

𝑇𝑤𝑖 = Reference basin water temperature [K] 

𝑇𝑤 = Basin water temperature [K] 

𝑈𝑠 = Heat loss coefficient from the insulation [W m-2 K-1] 

𝛼𝑐 = Absorptivity of the cover [J kg-1]  

𝛼𝑤 = Absorptivity of the water 

𝜌𝑤= Specific mass of water [kg m-3] 



Research, Society and Development, v. 10, n.1, e26910111304, 2021 
(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v10i1.11304 

 

 

21 

  

Nondimensional variable:  

Bi = Heat transfer Biot Number 

Biw = Water Biot Number 

𝐵𝑖𝑐
𝑤= Convective Water Biot Number 

𝐵𝑖𝑒
𝑤= Evaporation Water Biot Number 

𝐵𝑖𝑟
𝑤= Radiative Water Biot Number 

BiLoss = Loss Biot Number 

BiWind = Wind Biot Number 

𝐶𝑤𝑐
∗  = Solar Radiation Number 

Fow = Fourier Number 

G* = Areas Ratio Number 

Ja = Jakob Number 

wa =Dimensionless temperature difference between water in the basin and ambient environment 

wc = Dimensionless temperature difference between water and cover 

ZH = Water Basin Number 

 = Dimensionless condensate mass flow 

T = Efficiency 
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