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Abstract 

Purpose: In this paper, we analyzed the intra-annual variability of complexity of wind dynamics in Petrolina, Brazil and 

its relation with the wind potential. Methodology: We applied the Multiscale Sample Entropy (MSE) method on wind 

speed temporal series for each month of 2010. The data are recorded every 10 min at 50m height. Results: The results 

showed higher entropy values at higher temporal scales indicating that wind speed fluctuations are les regular and less 

predictable when wind speed is observed at lower temporal frequency. For all months, average wind speed is above a 

cut in level 3.5 m𝑠−1, the speed at which turbines start operating and producing electricity, indicating that the location 

of Petrolina is promising for wind energy generation. We also found that the wind speed is positively correlated with 

entropy values for all months when recorded at 10min frequency and between August and December when recorded t 

1 h frequency. Conclusion: In these periods wind speed temporal fluctuations are more irregular, which is considered 

as unfavorable condition for the operation of wind turbines, leading to lower efficiency in the capture of wind energy 
for electricity production.  

Keywords: Wind speed; Multiscale entropy; Wind energy. 

 

Resumo  

Objetivo: Neste artigo analisamos a variabilidade intra-anual da complexidade da dinâmica do vento em Petrolina, 

Brasil e sua relação com o potencial eólico. Metodologia: Aplicamos o método Multiscale Sample Entropy (MSE) nas 

séries temporais da velocidade do vento para cada mês de 2010. Os dados são registrados a cada 10 minutos a 50m de 

altura. Resultados: Os resultados mostraram os valores de entropia mais altos em escales temporais maiores, indicando 

que as flutuações da velocidade do vento são menos regulares e menos previsíveis quando a velocidade do vento é 

observada em frequência temporal mais baixa. Em todos os meses a velocidade média do vento está acima de 3,5 m𝑠−1, 

velocidade na qual as turbinas começam a operar e produzir eletricidade, indicando que a localização de Petrolina é 

promissora para a geração de energia eólica. Também descobrimos que a velocidade do vento está positivamente 
correlacionada com os valores de entropia para todos os meses quando dados são registrados na freqüência de 10min e 

entre agosto e dezembro quando são registrados na freqüência de 1 h. Conclusão: Nestes períodos as flutuações 

temporais da velocidade do vento são mais irregulares, o que é considerado condição desfavorável para o funcionamento 

dos aerogeradores, levando a uma menor eficiência na captação de energia eólica para a produção de eletricidade.  

Palavras-chave: Velocidade do vento; Multiscale entropy; Energia eólica. 

 

Resumen 

Objetivó: En este trabajo analizamos la variabilidad intra-anual de la complejidad de la dinámica del viento en Petrolina, 

Brasil y su relación con el potencial eólico. Metodología: Se aplicó el método de Multiscale Sample Entropy Entropy 

(MSE) en series temporales de velocidad del viento para cada mes de 2010. Los datos se registran cada 10 min a 50 m 

de altura. Resultados: Los resultados mostraron valores de entropía más altos en escalas temporales más altos, lo que 

indica que las fluctuaciones de la velocidad del viento son menos regulares y menos predecibles cuando la velocidad 
del viento se observa a una frecuencia temporal más baja. Para todos los meses, la velocidad media del viento está por 

encima de 3.5 m𝑠−1, la velocidad a la que las turbinas comienzan a funcionar y a producir electricidad, lo que indica 

que la ubicación de Petrolina es prometedora para la generación de energía eólica. También encontramos que la 

velocidad del viento se correlaciona positivamente con los valores de entropía para todos los meses cuando se registra 

a una frecuencia de 10 min y entre agosto y diciembre cuando se registra una frecuencia de t 1 h. Conclusión: En estos 
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períodos las fluctuaciones temporales de la velocidad del viento son más irregulares, lo que se considera una condición 

desfavorable para el funcionamiento de los aerogeneradores, lo que conlleva una menor eficiencia en la captación de 

energía eólica para la producción de electricidad. 

Palabras clave: Velocidad del viento; Multiscale entropy; Energía eólica. 

 

1. Introduction 

Among renewable energy sources wind power is one with most rapidly growing rate over the last decades because of 

its high efficiency and low pollution. As a wind producer Brazil ranks in the sixth place in the world, behind China, USA, 

Germany, India and France. At the end of 2019 Brazilian production was 15.45 GW representing 2.5% of the total worldwide 

onshore capacity(GWEC, 2019). It is projected to grow to 8.0%, in 2020, where half of the total capacity will be installed in the 

Northeastern region (Witzler, Ramos, Camargo, & Guarnier, 2016). This remarkable growth is the result of the government 

Program for Incentive of Alternative Electric Energy Sources (Programa de Incentivo às Fontes Alternativas de Energia Elétrica 

- Proinfa), which was created in 2002 to stimulate the electricity generation from wind power, biomass, and small hydroelectric 

plants (Dutra & Szklo, 2008). During the dry season in Northeast of Brazil, the temporal variation of the wind potential shows 

complementarity with the flows of the São Francisco river (Faria, Justino, & Monteiro, 2011) and wind electricity generation is 

extremely important for electricity supply in this region which often experiences prolonged drought periods, when hydroelectric 

plants decrease the electricity production due to very low flows and reservoirs levels (Cavalcante, Vieira, Campos, Brandini, & 

Medeiros, 2020). However, due to intermittency and high spatio-temporal variability of wind speed, large scale integration of 

wind power into electricity grid is still challenging task (Behera, Sahoo, & Pati, 2015).  

The evaluation of the wind potential at certain location requires a detailed statistical analysis of the wind speed and its 

frequency distribution at different heights and different periods during the year (de Araujo Lima & Bezerra Filho, 2010; Tar, 

2008). However, the knowledge of the temporal organization (complexity) of wind speed can provide valuable information about 

underlying stochastic processes that cannot be assessed through traditional statistical analysis. This knowledge is important for 

the planning of wind energy production and for evaluation of predictive models for wind speed and wind power. 

During the last decades various concepts and methods were developed to analyze complexity of temporal series, among 

which fractal and multifractal methods, methods based on information theory and complex networks were used to analyze wind 

speed data from different parts of the world (Koçak, 2009; Laib, Golay, Telesca, & Kanevski, 2018; Laib, Guignard, Kanevski, 

& Telesca, 2019; Q. Li & Zuntao, 2014). Among these methods, approaches that rely on entropy are particularly interesting due 

to their simplicity, lack of intensive computations, and robustness for short non-stationary and noisy data. 

In this work we evaluate the complexity of wind speed dynamics using Multiscale Entropy method  which provides 

information about time series regularity for multiple temporal scales (Costa, Goldberger, & Peng, 2002). We analyze high 

frequency data recorded in the city of Petrolina, which is considered one of most promising locations for wind energy production 

in Pernambuco, Brazil (Silva et al, 2002).  

 

2. Methodology 

The present study is a quantitative research (Pereira, Shitsuka, Parreira, & Shitsuka, 2018) that evaluates the complexity 

of wind speed dynamics using Multiscale Entropy method. 

 

2.1 Data  

The data used in this work are wind speed temporal series recorded at SONDA station (SONDA–Sistema Nacional de 

Organização de Dados Ambientais) in Petrolina, Brazil (09 ° 04 '08 "S latitude, 40 ° 19' 11 "O longitude, and altitude of 387m). 

The data was obtained from INPE- Instituto Nacional de Estudos Espaciais and are available at the electronic address 
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<http://sonda.ccst.inpe.br/basedados/petrolina.html>. The series are composed of 10-minute observations recorded at height of 

50m in the year 2010 (~ 52000 data points) as shown in Figure 1. 

 
Figure 1. Original wind speed series recorded at the Petrolina station. 

 

Note: Figure 1 shows wind speed (m/s) in each month of 2010 in Petrolina. Source: Author. 

 

2.2 Sample Entropy 

Sample entropy (SampEn) was introduced by Richman and Moorman, to evaluate the complexity of short non-stationary 

signals by examining time series for similar epochs, where more frequent and similar epochs (i.e., increased regularity in the 

time series) lead to lower values of SampEn, while less frequent and similar epochs (decreased regularity) lead to higher values 

of SampEn (Richman & Moorman, 2000). SampEn (m, r, N) is defined as the negative natural logarithm of the conditional 

probability that two sequences (of consecutive data within the time series) which are similar for m points remain similar at the 

next point, where self-matches are not included. In calculating the probability.  

Sample entropy algorithm is described as follows (Silva et al., 2002): 
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where )(rAm is the probability that two vectors will match for 1+m points. 

 

vi) Sample entropy (SampEn) is defined as  
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Sample entropy method was used to analyze data in physiology, geophysics, engineering  and hydrology (Balasis et al., 

2009; Chou, 2014; Kumar, Pachori, & Acharya, 2017; Ni, Feng, Wang, Yang, & Wang, 2017; Santana, Stosic, Ferreira, & Silva, 

2020a, 2020b).  
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2.3 Multiscale Sample Entropy  

Multiscale sample entropy method (MSE) was introduced by Costa et al., as a generalization of Sample entropy method 

(Costa et al., 2002; Richman & Moorman, 2000). MSE takes into account the multiple time scales by calculating sample entropy 

for consecutive coarse-grained time series  /,...,1),( Njjx =
 

determined by the scale factor : 

 +−=
=









j

ji
ixjx

1)1(
)(

1
)(  

where Niix ,...,1),( =  is original time series. It was shown that uncorrelated signals (white 

noise) have, for larger scales  , lower MSE values then correlated noise, indicating that MSE is more efficient for quantifying 

complexity in short and noisy time series, then traditional entropy methods that evaluate pattern repetition on single temporal 

scale. MSE method was used in analyzing physiological signals, hydrological processes, geophysical signals, and financial time 

series (Courtiol et al., 2016; Gamboa, Marques, & Stosic, 2019; Guzman-Vargas, Ramírez-Rojas, & Angulo-Brown, 2008; Zhou, 

Zhang, Li, & Chen, 2012).  

 

3. Results and Discussion 

The results of the descriptive statistics are presented in Table 1. For most wind turbines, the range of cut-in wind speed 

(the speed at which the turbine starts producing the energy) is 3.5–4.5 m𝑠−1 (Ayodele & Ogunjuyigbe, 2016). It is seen from 

Table 1 that the average wind speed is above cut in level during the whole year confirming that the location of Petrolina is 

promising for wind energy generation. The average wind speed is the highest (with lowest variation) in September indicating the 

most favorable period of year for energy generation.  

 

Table 1. Descriptive statistics for wind speed (m𝑠−1) temporal series recorded in Petrolina during the year of 2010.  

Month Average  Min  Max  SD CV 

January 4,26 0,00 11,40 1,56 0,37 

February 4,88 0,00 13,13 1,65 0,34 

March 3,82 0,00 10,77 1,67 0,44 

April 4,38 0,09 11,73 1,37 0,31 

May 4,55 0,01 10,76 1,36 0,30 

June 5,35 0,00 10,82 1,73 0,32 

July 5,64 0,67 10,65 1,50 0,26 

August 5,96 0,01 11,38 1,51 0,25 

September 6,27 0,78 12,04 1,52 0,24 

October 4,96 0,00 11,91 1,74 0,35 

November 4,94 0,00 11,15 1,44 0,29 
December 3,62 0,00 14,30 1,64 0,45 

Legend: Min – Minimun. Max – Maximun. SD – Standard Deviation. CV – Coefficient of Variation. Note: Table 1 shows wind speed (m/s) 
descriptive statistics for each month of 2010 in Petrolina. Source: Authors. 

 

Table 2 presents the MSE values for  =1,2,3,4,5,6 where  =6 corresponds to calculating averages of 10 min wind 

speed values for consecutive 1-hour periods. It is seen from Table 2 that MSE increases with scale 𝜏 indicating that wind 

dynamics is more irregular (less predictable) when observed on higher temporal scales. For most scales MSE values are lowest 

in October ( =2,3,4,6) and highest in May (  =3,4,5,6) indicating that the most regular (most predictable) wind regime at 

Petrolina location is in October while most irregular (least predictable) in May. For 𝜏=1 entropy value is the highest in September, 

month with the highest value of average speed. The power of the wind per unit area is given by 𝑃(𝑣) =
1

2
𝜌𝑣3, where 𝑃(𝑊𝑚−2) 

is the power per unit area, 𝜌(kg𝑚−3) is the air density, and 𝑣 (𝑚𝑠−1) is the wind speed (Safari & Gasore, 2010). Considering 

average wind speed September is the moth with the most favorable conditions for energy generation. However, the dynamical 
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regularity of wind speed temporal series is the lowest in September (highest entropy values) which can be considered as the is 

unfavorable condition for the operation of wind turbines. In order to contribute to a better understanding of the intra-annual 

temporal variability of conditions for wind power generation in Petrolina, we analyzed the correlation between average wind 

speed and entropy values for each month. 

 

Table 2. MSE values (m=2, r= 0,20,  =1,2,3,4,5,6) for wind speed temporal series recorded in Petrolina during the year 2010.  

   

 1 2 3 4 5 6 

SampEn       
Jan 1,159 1,259 1,341 1,399 1,443 1,487 
Fev 1,202 1,296 1,294 1,379 1,375 1,393 

Mar 1,171 1,317 1,386 1,426 1,536 1,550 

Abr 1,180 1,320 1,388 1,458 1,490 1,492 

Mai 1,224 1,341 1,422 1,493 1,559 1,599 

Jun 1,116 1,235 1,291 1,345 1,343 1,374 

Jul 1,205 1,306 1,412 1,459 1,488 1,516 

Ago 1,278 1,340 1,358 1,389 1,443 1,473 

Set 1,339 1,345 1,322 1,352 1,428 1,482 

Out 1,155 1,231 1,250 1,334 1,364 1,349 

Nov 1,285 1,350 1,378 1,449 1,507 1,509 

Dez 1,131 1,221 1,287 1,375 1,427 1,447 

Note: Table 2 shows wind speed (m/s) MSE values for scales 1 to 6 for each month of 2010 in Petrolina. Source: Authors. 

 

The results for 10 min frequency (𝜏=1) and 1-hour frequency (𝜏=6) are shown on figure 2, where it can be observed that 

for 𝜏=1 wind speed and entropy are positively correlated (Pearson coefficient P-0.64), while for 𝜏=6 positive correlation is 

observed between August and December. Ahmed and Mandic analyzed vertical component and horizontal component (east-

west) of wind velocity temporal series recorded with 3D anemometer and also found the increase of entropy with wind speed 

(Ahmed & Mandic, 2011). Li et al. 2011 analyzed the wind dynamics in the horizontal plane near the surface and also found that 

the entropy and wind speed are positively correlated (H. Li, Meng, Wang, & Zeng, 2011). 

 

  



Research, Society and Development, v. 10, n. 1, e8210111460, 2021 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v10i1.11460 
 

 

7 

Figure 2. Intra annual variation of MSE values (together with average wind speed) for (a)  =1 and (b)  =6. 

 

Note: Figure 2 shows wind speed (m/s) averages and MSE values for scales 1 and 6 for each month of 2010 in Petrolina and Pearson 
correlation. Source: Authors. 

 

4. Conclusions  

In this work, we studied intra annual complexity of the time series of wind speed in Petrolina using Multiscale Sample 

Entropy method (MSE). We found that the entropy values increase as the temporal scale increases, indicating les regular and 

less predictable wind speed series when recorded with lower temporal frequency.  

Although for all month’s average wind speed is above cut in level 3.5 m𝑠−1 at which most turbines start to produce 

electricity, dynamical regularity of wind speed temporal series revealed by MSE analysis provides an additional valuable 

information: for 10 min frequency wind speed and entropy are positively correlated (Pearson coefficient P-0.64), while for 1-

hour positive correlation is observed between August and December. Higher entropy values indicate fewer regular dynamics, 

which is unfavorable condition for the operation of wind turbines and consequently there is less efficiency in the capture of wind 

energy for wind electricity production.  

Future studies should be focused on large scale spatial analysis by including data from various locations that are 

considered as promising for wind power generation in Brazil.  
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