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Abstract  

Waste biomass and agro-industrial by-products, for production ethanol, will meet much of the great demand for this 

product. To reduce costs and optimize production, this study investigated solid-state fermentation (SSF) to obtain 

crude enzyme complex (CEC) from different agro-industrial biomasses (sugarcane bagasse, corn peel bran, rice straw 

bran and roasting and ground coffee residue) using cellulolytic fungi. The most promising CEC were evaluated in 

simultaneous hydrolysis and fermentation (SHF) for ethanol production by Saccharomyces cerevisiae in a culture 

broth containing sugarcane bagasse treated by steam explosion, and roast and ground coffee residue. In SSF with 

bioreactor volume of 0.25 L, containing 40 g of the biomass mixture and 40 g of sterile water with resuspended cells 

(1.0 x108 spores/g of solid medium) and temperature of 30±2 ºC, the strains Trichoderma reesei and Penicilium 

oxalicum provided the best enzyme activity. The CEC of T. reesei provided a concentration of 7.5 g L-1 of ethanol in a 

substrate containing treated sugarcane bagasse (60%) and roast and ground coffee residue (40%), under SHF 

conditions (pH 4.5, 35±2 °C, 48 h). The results obtained in this study show a promising alternative for correct disposal 

and use of residues and agro-industrial by-products by use in the production of enzymes and lignocellulosic ethanol. 

Keywords: Ethanol; Residues; Enzyme complex; Lignocellulosic; Biomasses. 

 

Resumo  

Os resíduos de biomassa e subprodutos agroindustriais, utilizados para a produção de etanol, atenderá boa parte da 

grande demanda por esse produto. Para reduzir custos e otimizar a produção, este estudo investigou a fermentação em 

estado sólido (FES) para obter complexo enzimático bruto (CEB) de diferentes biomassas agroindustriais (bagaço de 
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cana-de-açúcar, farelo de casca de milho, farelo de palha de arroz e torrefação e resíduo de café moído) usando fungos 

celulolíticos. Os CEB mais promissores foram avaliados em hidrólise e fermentação simultâneas (HFS) para produção 

de etanol por Saccharomyces cerevisiae em caldo de cultura contendo bagaço de cana tratado por explosão a vapor e 

resíduo de café torrado e moído. Em FES, com volume de biorreator de 0,25 L, contendo 40g da mistura de biomassa 

e 40g de água estéril com células ressuspensas (1,0 x108 esporos/g de meio sólido) e temperatura de 30 ± 2ºC, as 

cepas Trichoderma reesei e Penicilium oxalicum forneceram a melhor atividade enzimática. A CEB de T. reesei 

proporcionou concentração de 7,5 g L-1 de etanol em substrato contendo bagaço de cana tratado (60%) e resíduo de 

café torrado e moído (40%), nas condições HFS (pH 4,5; 35±2°C; 48h). Os resultados obtidos neste estudo mostraram 

uma alternativa promissora para a correta destinação e aproveitamento de resíduos e subprodutos agroindustriais para 

a produção de enzimas e etanol lignocelulósico. 

Palavras-chave: Etanol; Resíduos; Complexo enzimático; Lignocelulósico; Biomassas. 

 

Resumen  

Los residuos de biomasa y los subproductos agroindustriales, utilizados para la producción de etanol, cubrirán gran 

parte de la gran demanda de este producto. Para reducir costos y optimizar la producción, este estudio investigó la 

fermentación en estado sólido (FES) para obtener complejo enzimático crudo (CEC) a partir de diferentes biomasas 

agroindustriales (bagazo de caña de azúcar, salvado de cáscara de maíz, salvado de paja de arroz y residuos de café 

tostado y molido) utilizando hongos celulolíticos. Los CEC más prometedores fueron evaluados en hidrólisis y 

fermentación simultáneas (HFS) para la producción de etanol por Saccharomyces cerevisiae en caldo de cultivo que 

contiene bagazo de caña de azúcar tratado por explosión de vapor y residuos de café tostado y molido. En FES, con un 

volumen de 0.25 L biorreactor, conteniendo 40g de la mezcla de biomasa y 40g de agua estéril con células 

resuspendidas (1.0 x108 esporas/g de medio sólido) y temperatura de 30±2ºC, las cepas de Trichoderma reesei y 

Penicilium oxalicum aportaron la mejor actividad enzimática. El CEC de T.reesei proporcionó una concentración de 

7.5 g L-1 de etanol en un sustrato que contenía bagazo de caña de azúcar tratado (60%) y residuo de café tostado y 

molido (40%), en condiciones HFS (pH 4.5; 35±2°C; 48h). Los resultados obtenidos en este estudio mostraron una 

alternativa prometedora para el correcto destino y uso de residuos y subproductos agroindustriales para la producción 

de enzimas y etanol lignocelulósico. 

Palabras clave: Etanol; Residuos, Complejo enzimático; Lignocelulósico; Biomasas. 

 

1. Introduction  

Lignocellulosic biomasses are renewable and sustainable raw materials used to produce bioethanol. Abundant in the 

form of residues from energy crops and agro-industrial products as well as food processing residues, they present themselves 

as an alternative to mitigate environmental impacts associated with energy demands, and uncertainties in relation to oil supply. 

Due to their recalcitrant structure, the steps for converting lignocellulosic materials are physical or thermochemical 

pretreatment, followed by some method to improve the accessibility and reactivity of carbohydrates, enzymatic hydrolysis for 

generation of fermentable sugars, and microbial fermentation to obtain fuel ethanol (Althuri et al., 2017; Li et al.; 2019; Robak 

and Balcerek, 2020). 

Enzymatic hydrolysis is worthy of attention given the amount and cost of enzymes, complexity of biomass, and 

chemical reactions with generation of inhibitors (Khare et al., 2015; Nguyen et al., 2017). Efforts have been made to improve 

processes that aim for the viability of cellulosic ethanol. Thus, enzymatic preparations in situ (Fischer et al., 2017; Lopes et al., 

2017; Wang et al., 2020) and the simultaneous hydrolysis and fermentation processes represent a strategy to decrease operating 

costs, reduce inhibition and contamination, and facilitate recovery of the final product (Öhgren et al., 2007; Leduc et al., 2010; 

Gu et al., 2014; Guidini et al., 2014; Cuevas et al., 2015). 

Research regarding isolation and identification of microorganisms capable of growing on the surface of solid materials 

and generating cellulolytic enzymes is also worth mentioning. The solid-state fermentation process can be modified by varying 

the amount and composition of carbon sources and by adding nutrients and water to regulate activity during fermentation. The 

advantages are the use of agro-industrial waste as an energy source for microorganisms, facility of production and smaller 

generation of effluents (Dashtban et al., 2009; Lever et al., 2010; Liu et al., 2020; Singhania et al., 2008). 

The present study evaluated the production of enzymatic complex by fermentation in solid state from different agro-

industrial biomasses and fungi. Crude enzymatic complexes of fungi with the potential to produce cellulase were used to obtain 
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ethanol from Saccharomyces cerevisiae in a culture broth containing sugarcane bagasse treated to steam explosion, roast 

residue and coffee grounds. 

 

2. Material and Methods 

Pereira et al. (2018) provides methodological support for present of research. Thus, the materials and methods used in 

this study are detailed in the next items. 

 

2.1 Microorganism and biomass 

Strains of fungi with the potential to produce an enzyme complex from different biomasses were obtained from the 

stock collection of the Biochemical Engineering Laboratory of the Faculty of Chemical Engineering, Federal University of 

Uberlândia. Saccharomyces cerevisiae Y904 used for alcoholic fermentation was obtained from AB Brazil (Pederneiras/SP, 

Brazil). Fungi were kept in Potato Dextrose Agar (PDA), with composition (in g L-1 of 200.0 g of potato, 20.0 g glucose 

(C6H12O6) and 20.0 g agar, stored in refrigeration temperature (5±1 °C) and recultivated every 20 days. Saccharomyces 

cerevisiae was used in lyophilized form and stored at 5±1 °C during the study period. 

Used biomasses were kindly supplied by the Sugarcane Technology Center (STC) and by cereal and food processing 

industries. Sugarcane bagasse, with low severity steam explosion treatment (12 kgf/cm2 for 8 minutes) (STC/Piracicaba - SP, 

Brazil).  Rice straw bran (COCAL Cereais, Uberlândia-MG, Brazil); corn peel bran (Cargill, Uberlândia-MG, Brazil) roasting 

and grinding coffee (GeoCoffee, Patrocínio-MG, Brazil). Biomasses used in the experiments were stored at a temperature of 5 

± 1 °C, and subsequently ground and sieved (1.8 mm mesh) before experiments. Corn peel bran was gelatinized (solid water 

ratio 1:1, 90 °C, 15 min) (Maarel et al., 2002). 

 

2.2 Selection of microorganisms 

Microorganisms listed in the Table 1 were evaluated and selected by enzymatic activity based on filter paper cellulase 

(Fpase) of the enzymatic complexes produced by Solid State Fermentation (SSF). Conditions were according to Fischer et al. 

(2014): 72 h fermentation time, 40 g solid substrate (60% rice straw bran and 40% treated sugarcane bagasse), and 40 g water 

with resuspended cells of the selected microorganism.  

 

Table 1 – Species of microorganisms evaluated to produce enzyme complex. 

Identification Microorganism species 

A Aspergillus ochraceus 

B Fusarium sp.  

C Monilia sitophila 

D Mucor racemosus Fresenius 

E Penicillium oxalicum 

F Trichoderma asperellum 

G Trichoderma harzianum 

H Trichoderma reesei 

Source: Authors. 
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2.3 Production of crude enzymatic complex 

For cell growth, microorganism cells were produced by submerged fermentation, at 30±2 °C in flasks under agitation 

on a shaker at 150 rpm. We used Czapeck medium with the following composition (g/L): 2 g sodium nitrate (NaNO3), 1 g 

dibasic potassium phosphate (K2HPO4), 0.5 g magnesium sulfate (MgSO4), 0.5 g potassium chloride (KCl), 0.01 g iron II 

sulfate (FeSO4) and 20 g glucose (C6H12O6). After 48 hours, cells were centrifuged at 8000 g for 10 minutes, and washed twice 

with sterile water, resuspended in 40 g of sterile water and used in SSF (1.0 x 108 spores/g of solid medium). 

For enzyme production, SSF was conducted in a static reactor with 0.25 L capacity and controlled temperature of 

30±2 ºC, containing 40 g of previously sterilized solid medium, and 40 g of sterile water containing cells of one of the studied 

microorganisms. The composition of the solid medium was defined for each experiment. For the production of Crude Enzyme 

Complex (CEC) to extract enzymes, aqueous solution of Tween 80 in a concentration of 1.0% (v/v) was used. The solution 

was submitted to stirring for 10 minutes (100 rpm) followed by filtration to remove solid material and completed with sterile 

water to obtain 100 mL of CEC (liquid fraction). 

 

2.4 Evaluation of the SSF solid medium composition  

After selection of the most promising fungi for the production of enzyme complex, the composition of a suitable 

substrate for SSF was evaluated. SSF were performed with 40 g of solid medium (biomass). Composition is presented in Table 

2, and conditions are as previously mentioned for the production of crude enzymatic complex. 

 

Table 2 – Composition of solid medium of SSF. 

Composition SB CPB RSB RGCR 

Medium 1 40% 60% - - 

Medium 2 40% - 60% - 

Medium 3 40% - - 60% 

Medium 4 40% 30% 30% - 

Medium 5 40% 30% - 30% 

Medium 6 40% 30% 15% 15% 

Abbreviations: aSB: sugarcane bagasse with steam explosion treated (12 kgf/cm2, 8 minutes). bCPB: corn peel bran 

(gelatinized). cRSB: rice straw bran. dRGCR: roasting and ground coffee residue. 

Source: Authors. 

 

2.5 SSF time evaluation 

SSF times were evaluated to maximize enzymatic activity. For the experiments, SSF times varied in 12-hour intervals 

(36, 48, 60, 72, 84, 96, 108 and 120 hours), using each of the selected fungi and respective solid medium composition. Other 

conditions were as described in the production of crude enzymatic complex section.  

 

2.6 Simultaneous enzyme hydrolysis and alcoholic fermentation  

Simultaneous enzymatic hydrolysis and alcoholic fermentation (SHF) processes were used. Enzymatic complexes were 

produced in situ by T. reesei and P. oxalicum for 72 h. SHF was performed in a conical reactor with 0.25 L capacity, operating 

in batch with agitation (120 rpm), and temperature of 35±2 ºC for 48 hours. A total of 25 g of substrate was used, varying in 

composition and concentration of the SHF solid mediam, is shown in Table 3. The initial pH was 4.5 and the concentration 

was 30 g L-1  of  S. cerevisiae Y904. The alcoholic fermentation medium was supplemented with the following composition (g 
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L-1): 5 g monobasic potassium phosphate (KH2PO4), 5 g potassium chloride (KCl), 1 g magnesium sulfate (MgSO4), 1 g 

ammonium chloride (NH4Cl) and 1 g yeast extract. Experiments were carried out in triplicate. 

 

Table 3 - Composition of solid medium for alcoholic fermentation. 

Composition SB RGCR 

Medium 1 50% 50% 

Medium 2 60% 40% 

Medium 3 70% 30% 

Abbreviations: aSB: sugarcane bagasse with steam explosion treated (12 

kgf/cm2, 8 minutes). bRGCR: roasting and ground coffee residue. Source: 

authors. 

 

2.7 Analytical methods 

SSF cell concentrations were determined in a Neubauer Chamber. Propagation plate methodology (48 h incubation at 

40 °C in Czapek medium) (Fischer et al., 2017) was sued to start SSF by estimating the optical density at 600 nm, correlated 

with the number of colonies obtained. The cellulase activity was determined by filter paper activity (FPA), following IUPAC 

standard procedures; result was expressed in international Units (Ghose, 1987). Sugar and ethanol concentrations were 

determined by high performance liquid chromatography (HPLC; Shimadzu LC-20A) equipped with a refractive index detector, 

a Hi-plex Ca column (7.0 × 300 mm, Agilent, Santa Clara, CA, USA), operated at 85 °C and ultra-pure water as the mobile 

phase at a flow rate of 0.6 mL/min.  

 

3. Results and Discussion  

3.1 Selection of microorganisms producing enzyme complex 

The results of enzymatic activity (Fpase) of crude enzyme complexes (CEC) produced by different fungi studied are 

shown in Figure 1. All microorganisms were able to produce CEC under experimental conditions, ranging from 0.5 to 

4.2 FPU/mL.  
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Figure 1 - Activity of the enzymatic complex (FPU/mL) produced by different strains. (A) Aspergillus ochraceus, (B) 

Fusarium sp, (C) Monilia sitophila, (D) Mucor racemosus Fresenius, (E) Penicillium oxalicum, (F) Trichoderma asperellum, 

(G) Trichoderma harzianum, (H) Trichoderma reesei. 

 
Fonte: Autores. 

 

The strains Trichoderma reesei and Penicilium oxalicum showed higher performance. Thus, the two strains were 

selected for the next experiments.The observed higher performance corroborates with other researchers who report that species 

from the genera Trichoderma, Aspergillus, Penicillium, Chaetomium, Mucor and Clostridium, as well as other fungi, have the 

potential to produce enzymatic complexes used in the production of enzymes for hydrolysis of cellulosic biomass (Buzzini and 

Martini 2002; El-Said and Saleem 2008; Fischer et al., 2013; Rocha et al., 2013; Thomas et al., 2013; Althuri et al., 2017; Liu 

et al., 2020; Wang et al., 2020). 

 

3.2 Selection of solid-state fermentation medium for CEC production 

The solid materials used as substrate for SSF were composed of widely available agro-industrial by-products. All 

evaluated solid media were able to generate an enzyme complex from fungi, as shown in Figure 2. Medium 5 (40% SB, 30% 

CPB and 30% RGCR) enabled the production of an enzyme complex with greater enzyme activity for the two evaluated strains 

(6.1 and 5.4 FPU/mL for T. reesei and P. oxalicum, respectively).  
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Figure 2 - Effect of the composition of the solid medium on the enzymatic activity (72 h, 30±2 ºC). 

 

Fonte: Autores. 

 

The sugarcane bagasse used contained about 50% water, 30% cellulose, 7.3% hemicellulose, 11.2% lignin and 1.5% 

ash, according to previous characterization (method according to Browning (1967). The use of biomass as a carbon source for 

cultivation of microorganisms in solid media and production of enzymes and biomass for cellulolytic ethanol have been 

highlighted in previous studies (Fischer et al., 2017; Lopes et al., 2017). The results obtained in the present study point to 

biomass, roasting and ground coffee residue (RGCR), still little used in technologies for obtaining cellulolytic enzymes and 

renewable energy. Also for biomass, corn peel bran (CPB), which has a high fiber, cellulose and hemicellulose content.  It is 

also worth mentioning that Brazil is the world's largest producer of coffee, and one of the world's largest producers of corn, 

generating significant amounts of residue from processing these materials, so their use in biotechnological processes allows 

proper destination and recovery of these residues. 

In a study by Li et al. (2019) duckweed as an inducer of cellulase production by Trichoderma reesei Rut C30, in a 

reaction induced with 50 g L-1 of duckweed in hake flasks, during 120 h the cultivation, the filter-paper activity (FPA) reached 

6.5 FPU/mL for 72 h the cellulase production. And Wang et al. (2020) studied cellulase production by the new mutant strain 

Trichoderma harzianum EUA 20; it exhibited filter paper cellulase activity up to 14.79 IU/mL within 6 days in shake flask 

cultivation. Using pretreated oil palm empty fruit bunch and corncob powder as substrates, the presented activity was 6.52 and 

8.80 IU/mL, respectively. In a study by Sukumaran et al. (2009) cellulases from Trichoderma reesei Rut C30 demonstrated the 

best results in 96 h of SSF for cellulase (1.14 FPU/mL), wheat bran was used as substrate for production of the enzyme under 

solid state fermentation. 

 

3.3 Evaluation of solid state fermentation time in the production of CEC 

Figure 3 presents the results of the effect of fermentation time in solid state on enzymatic activity. The 72-hour time 

was the most suitable for both evaluated fungi, being 6.1 FPU/mL for T. reesei and 5.4 FPU/mL for P. oxalicum. The reduction 

in enzyme production after 72 hours may be due to formation of inhibitory metabolites in the medium. In this study, was fixed 

a period of 72 h for enzymatic complex production for hydrolysis and alcoholic fermentation. 
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Figure 3 - Effect of FES time with enzyme activity (A) Trichoderma reesei (B) Penicillium oxalicum. 

 

                      

 

Fonte: Autores. 

 

The results corroborate with the studies by Li et al. (2019) who obtained 6.5 FPU/ mL of cellulase activity for 72 h of 

cultivation using T. reesei Rut C30. And they are superior to the results obtained by Sukumaran et al. (2009), that in 96 h of 

solid state fermentation obtained 1.14 FPU/mL of cellulase activity. 

 

3.4 Evaluation of ethanol production by varying the composition of the alcoholic fermentation medium 

Three different media were used during alcoholic fermentation for ethanol production: medium 1 (50% SB and 50% 

RGCR); medium 2 (60% SB and 40% RGCR) and medium 3 (70% SB and 30% RGCR) is shown in Table 4. 
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Table 4 - Effect of solid medium on ethanol production by Saccharomyces cerevisiae (pH 4.5, 35±2 ºC, 48 h, SHF). 

 Ethanol production (g L-1) 

Microorganism Medium 1 Medium 2 Medium 3 

Trichoderma reesei 6.1±0.18 7.5±0.11 5.3±0.14 

Penicillium oxalicum 3.2±0.14 4.3±0.18 2.9±0.25 

Abbreviations: aSB: sugarcane bagasse with steam explosion treated (12 kgf/cm2, 8 minutes). bRGCR: roasting and 

ground coffee residue. 

Source: Authors. 

 

The proportions of biomass 60% BCA and 40% RC (Medium 2) provided the highest ethanol production for both 

strains used, indicating the potential of coffee residue as an additional biomass source for obtaining fuel ethanol. Using an 

enzyme complex of P. oxalicum and the medium 2 of SSF, 4.3 g L-1 of ethanol was obtained. Crude enzyme complex from T. 

reesei provided the most expressive concentration of ethanol, equal to 7.5 g L-1. 

Improvements in ethanol yield can be obtained by studying the conditions of alcoholic fermentation. Fischer et al. 

(2017) obtained a concentration of 12.1 g L-1 under the optimized conditions of 36 h of SFS, temperature of 35 °C, 99.8% of 

enzymatic load, amount of inoculum of 29.5 g L-1 (S. cerevisiae) and concentration of 24.9% of sugarcane bagasse treated with 

steam explosion. 

The authors Althuri et al. (2017) used a mixture of biomasses (Ricinus communis, Saccharum officinarum and 

Saccharum spontaneum) and concoction of laccase enzymes (Pleurotus djamor) and holocellulase (T. reesei RUT C30) 

followed by co-formation to produce bioethanol. In optimized condition (substrate loading of 27.54% (w/v) and incubation 

time of 21.96 h), the aforementioned authors obtained the maximum ethanol concentration of 7.86% (v/v) (62.01 g L-1). Lever 

et al. (2010) produced crude enzymatic extract by T. reesei (CBS439.92) and obtained 5 to 21 g L-1 of ethanol concentration in 

batch fermentation, and when they changed the form of conduction to fed-batch fermentation. 

 

4. Conclusion  

With the analysis of the results and discussions it can be noted that crude enzymatic complexes produced from solid 

state fermentation of a mixture of agro-industrial biomass and cellulolytic fungi are promising regarding the use of residues 

and agro-industrial by-products. Brazil has great potential for producing ethanol from biomass, mainly because it is one of the 

largest producers of sugarcane, corn and coffee. Improvements associated with ethanol production can be achieved by nutrient 

feeding strategies, concentration of enzyme complexes, enzyme concoctions and successive fermentations. 

The study of the use of mixtures of enzymatic complexes obtained by the most promising microorganisms in the 

production of lignocellulosic enzymes and application in the production of ethanol is important for future research and work. 

Also the study of conditions optimized for simultaneous enzymatic hydrolysis and alcoholic fermentation such as enzyme load, 

amount of yeast inoculum, substrate concentration, and process temperature. 
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