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Abstract 

A pavement mechanistic-empirical analysis is based on a pre-designed structure checked for required performance 

criteria. In case the latter are not met, this structure is modified and reprocessed. In this context, analyzing the effect of 

variations in project parameters on pavement performance prediction subsidizes a better understanding of results 

provided by computer programs. The objective of this study is to assess the effect of layer thickness and resilience 

modulus variations on flexible pavement performance. To do so, performance was estimated for the 20th project year 

through Elastic Layered System Model 5 (ELSYM5) software and American Association of State Highway and 

Transportation Officials (AASHTO) Mechanistic-Empirical method (ME). Using multiple regression models for result 

adjustment and through statistical assessments on regression coefficients calculated, it can be concluded that pavement 

lifespan consumption, predicted by simulations on ELSYM5, is sensitive to variations in coating and subbase thickness 

and in subgrade resilience modulus. For AASHTO ME method, predicted values for distresses were significantly 

sensitive to variations in coating, base and subbase thickness, and in base and subgrade resilience modulus. Comparing 

both approaches, it is concluded that ELSYM5 can be a viable alternative to the application of a ME pavement design 

method. 

Keywords: Design; Empirical-mechanistic; Structural responses; Distresses. 

 

Resumo  

A análise empírico-mecanística de um pavimento parte de uma estrutura pré-dimensionada que é verificada quanto aos 

critérios de desempenho requeridos. Caso estes não sejam atendidos, essa estrutura é modificada e reprocessada. Neste 

contexto a análise do efeito das variações nos parâmetros de projeto na previsão do desempenho do pavimento fornece 

subsídio para uma melhor compreensão dos resultados fornecidos pelos programas computacionais. O objetivo deste 

trabalho é avaliar o efeito das variações das espessuras e módulos de resiliência das camadas no desempenho dos 

pavimentos flexíveis. Para tanto, foram feitas estimativas de desempenho utilizando o programa Elastic Layered System 

Model 5 (ELSYM5) e o método Empírico Mecanístico (E-M) da American Association of State Highway and 

Transportation Officials (AASHTO). Utilizando modelos de regressão múltipla para o ajuste dos resultados e, pela 

avaliação estatística dos coeficientes de regressão obtidos, pode-se concluir que o consumo da vida útil do pavimento, 

previsto com simulações no ELSYM5, é sensível às variações das espessuras do revestimento e da sub-base e dos 

módulos de resiliência do subleito. Para o método E-M da AASHTO os valores previstos para os defeitos foram 

significativamente sensíveis às variações das espessuras do revestimento, da base e da sub-base e dos módulos de 

resiliência da base e do subleito. A partir da comparação das duas abordagens, concluiu-se que o ELSYM5 pode ser 

uma alternativa viável para a aplicação de um método E-M de dimensionamento de pavimentos.  

Palavras-chave: Dimensionamento; Empírico-mecanístico; Respostas estruturais; Defeitos. 

 

Resumen  

El análisis empírico-mecanicista de un pavimento parte de una estructura predimensionada que se verifica para los 

criterios de desempeño requeridos. Si no se cumplen, se modifica y se vuelve a procesar. En este contexto, el análisis 

del efecto de las variaciones en los parámetros de diseño sobre la predicción del desempeño del pavimento proporciona 
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soporte para una mejor comprensión de los resultados proporcionados por los programas informáticos. El objetivo de 

este trabajo es evaluar el efecto de las variaciones de espesor y módulo de resiliencia de capas sobre el comportamiento 

de pavimentos flexibles. Para ello, se realizaron estimaciones de rendimiento utilizando el programa Elastic Layered 

System Model 5 (ELSYM5) y el método empírico mecanicista (E-M) de American Association of State Highway and 

Transportation Officials (AASHTO). Utilizando modelos de regresión múltiple para ajustar los resultados y, a través 

de la evaluación estadística de los coeficientes de regresión obtenidos, se puede concluir que el consumo de la vida útil 

del pavimento, pronosticado con simulaciones en ELSYM5, es sensible a variaciones en el espesor del pavimento. 

revestimiento y los módulos de resiliencia de subbase y subrasante. Para el método AASHTO E-M, los valores predichos 

para los distressos fueron significativamente sensibles a las variaciones en el espesor del recubrimiento, base y subbase 

y en los módulos de resiliencia de la base y subrasante. De la comparación de los dos enfoques, se concluyó que 

ELSYM5 puede ser una alternativa viable para la aplicación de un método de diseño de pavimentos E-M. 

Palabras clave: Dimensionamiento; Empírico-mecanicista; Respuestas estructurales; Defectos. 

 

1. Introduction  

Pavement design based on mechanistic-empirical methods are becoming increasingly promising for being currently 

described as the approach that is more in line with the reality of the field. Pavement analysis by this method relies on a pre-

designed structure for which structural responses are determined and damages accumulated throughout the project lifespan are 

calculated. Results obtained allow verifying compliance with project criteria from the initial structure. In case these criteria are 

not met, variations are applied to this structure, and the method is repeated until the condition established is reached. 

In this context, analyzing the effect of project parameter variations subsidizes a better understanding of how results 

provided by computer programs behave through input variables. In addition, knowing how each parameter influences distress 

prediction can help designers decide on which parameter should be subjected to variation for the best resolution of the problem 

presented in the analysis. Studies carried out in order to observe such behaviors are known as sensitivity analysis. 

The sensitivity of distress prediction by Mechanistic Empirical Pavement Design Guide (MEPDG) software according 

to pavement layer thickness variations was verified by Pelisson, Fernandes, Silva, and Fontenele (2015). The results that the 

authors found showed that increases in asphalt coating thickness from 7.5 to 15 cm reduce all distresses, with the higher impact 

being on fatigue cracking. Base thickness variation caused considerable reductions only for fatigue cracking; as for permanent 

deformations and the International Roughness Index (IRI), they showed little sensitivity. About subbase thickness variation, 

distresses were little or not at all sensitive. 

As well as the research mentioned above asphalt coating thickness variation was also studied by Vidotto and Fontenele 

(2013), but in this study ELSYM5 computer program was used for structural response calculation. ELSYM5 is a computer 

program that applies the theory of elastic layer system that considers as inputs the number of layers (up to 5), their thicknesses, 

modulus of elasticity and Poisson coefficients, the location and magnitude of the loads per wheel and coordinates for determining 

pavement responses. From structural responses obtained in the study, the authors determined the mechanistic-empirical 

Equivalent Standard Axle Load (ESAL) for cracking and deformations. They concluded that both distresses are sensitive to the 

data analyzed. 

Layer resilience modulus variation was studied by Alexandre et al. (2015), who also used ELSYM5 computer program 

to determine pavement structural responses. As per results, they concluded that, with base resilience modulus variation, the 

deformation responsible for appearance of fatigue cracking is more sensitive than that related to rutting, and there is deterioration 

as the parameter increases. As for the subbase layer, they observed low sensitivity to resilience modulus variation. Regarding 

the subgrade, sensitivity was considered as very low for cracking, but expressive for rutting. The sensitivity of distress prediction 

by MEPDG software as to variations in granular material properties (layer thickness, resilience modulus, plasticity index, 

liquidity threshold, etc.), elements of a pavement base and subgrade, was studied by Li, Schwartz, Kim and Ceylan (2012). Base 

and subgrade resilience modulus and base thickness are the properties with the greatest influence on performance prediction for 

all criteria, regardless of traffic volume. Poisson’s ratio for base and subgrade presented sensitivity as well. Still according to the 
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authors, fatigue cracking represents the performance parameter that is most sensitive to variations in granular material properties, 

while bottom-up cracking and rutting proved to be insensitive to variations in these properties. 

The influence of material properties on performance predicted by MEPDG software was also the study object of Orobio 

and Zaniewski (2011, 2012). The research employed a pavement composed of three asphalt concrete layers, a fourth layer made 

up of a bitumen-treated permeable base, and the subgrade. Cracking prediction was sensitive to Poisson’s ratio variations for the 

first four layers, for the void ratio of the first three, for the binder content of the first, third and fourth layers, and for the subgrade 

resilience modulus. When it comes to rutting, there was sensitivity as to variations in the following items: Poisson’s ratios, void 

ratios and binder contents for the first two layers; the fourth layer void ratios, and the subgrade resilience modulus. About IRI 

prediction, there was sensitivity as to variations of the following items: Poisson’s ratios, void ratios and binder contents for the 

first three layers; the fourth layer binder content; and the subgrade resilience modulus. 

In addition to properties of materials, traffic also plays a major role in performance prediction, as discussed by Orobio 

and Zaniewski (2013). The study conducted addressed the sensitivity of MEPDG software results as to traffic input data 

variations. The authors found that IRI, rutting and bottom-up cracking are more sensitive to Annual Average Daily Traffic 

(AADT). Although these parameters are not controlled by designers, the research results show that they should be carefully 

assessed. 

Another parameter that should be taken into account is tire inflation pressure because, as verified by Fontenele and 

Fernandes (2014), a tire pressure increase from 563 kPa to 844 kPa reduced the pavement predicted life between 50% and 60%, 

concerning rutting, and by 24%, when it comes to fatigue cracking, according to values predicted on MEPDG software. 

Several other studies concerning the sensitivity of the mechanistic-empirical method to design parameters developed 

over the last 10 years can also be cited, such as: Schwartz, Li, Ceylan, Kim and Gopalakrishnan (2013) performed with the 

results of the MEPDG software a global sensitivity analysis with parameters related to materials and traffic through random 

sampling techniques; Mai, Turochy and Timm (2013, 2014) used local sensitivity analysis of traffic input data in the MEPDG 

software to quantify the effects of different traffic characterizations on pavement performance; Li, Zhang, Zhao and Wang (2014) 

performed global sensitivity analyzes using simple factorial experiments varying the traffic and materials parameters in MEPDG; 

Cooper, Elseifi and Mohammad (2014) used variations from a full factorial experiment on coating and base layer thicknesses, 

base layer resilience moduli, subgrade types and traffic levels to verify the sensitivity of the responses provided by the MEPDG 

program; Hossain, Singh and Zaman (2016) studied the sensitivity of the ruttings predicted by AASHTOWare Pavement ME 

Design from the variation of traffic input parameters; Ranadive and Tapase (2016) used the finite element technique to analyze 

the sensitivity of pavement performance parameters from the variation of thickness and material properties of different layers of 

the structure; Yang, You, Hiller and Watkins (2017) used the AASHTOWare Pavement ME Design software to apply a local 

sensitivity analysis considering the variation of traffic volumes and climate parameters; Harsini, Haider, Brink, Buch and Chatti 

(2018) investigated, from a global sensitivity analysis, the parameters that are important for the pavement rehabilitation project 

using the AASHTOWare Pavement ME Design program; Koshigoe, Zanoni, Silva and Fontenele (2019) compared the sensitivity 

of the variation of the average daily volume and traffic growth rate on flexible pavements performance resulting from the use of 

the computer programs MEPDG and AASHTOWare Pavement ME Design; Li, Minnekanti, Yang and Wang (2019) applied 

sensitivity analyzes to assess pavement performance subject to various levels of traffic input data in the AASHTOWare Pavement 

ME Design software; Santos, Silva and Fontenele (2019) compared the sensitivity observed by the performance analyzes 

generated by the MEPDG and AASHTOWare Pavement ME Design computer programs regarding the use of the program's 

standard load spectra (values generated from US data) and those developed with traffic data from the Imigrantes highway in 

Brazil. 

As can be seen, the studies reported used different techniques and employ programs that may require a series of 
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information and a higher level of complexity. Thus, the intention herein is to investigate how thickness and resilience modulus 

variations affect flexible pavement performance prediction by applying AASHTO mechanistic-empirical design method and 

ELSYM5 computer program. This study aims to contribute to the identification of data that most influence pavement 

performance to indicate to designers which parameters need more attention and more detailed collection. As well as, observe if 

a simplified analysis regarding the stresses and strains in the pavement can produce satisfactory results regarding the prediction 

of pavement performance. 

 

2. Methodology  

This section covers the method used in the research development. After definition of analysis general conditions used, 

the experimental procedure was divided into three stages: the first one consisted of analyzing pavement structures on ELSYM5 

program, which was chosen for the research for being public domain and providing a simplified pavement structure analysis; the 

second stage referred to analyses by AASHTO ME method, using MEPDG software and AASHTOWare® Pavement Design; 

the last stage consisted of analyzing performance prediction sensitivity according to input parameters for each of the programs 

used. 

 

2.1 Analysis General Conditions 

Sensitivity analysis was performed locally, that is, with one parameter variation at a time, maintaining the other ones 

constant. This analysis used ELSYM5 computer program (public domain), MEPDG (version 1.100) and AASHTOWare® 

Pavement Design, version 2.1 (annual international license), with the last two being, respectively, the ME method trial and 

commercial programs of the American Associate of State Highway and Transportation Officials (AASHTO). 

The project parameters chosen for analysis were asphalt coating, base and subbase layer thickness, as well as base, 

subbase and subgrade layer resilience modulus. Distresses were estimated for the 20th project year, considering a tire inflation 

pressure of 844 kPa (120 psi). 

The reference pavement structure adopted in this study was the same as that used by Fontenele (2011) and Fontenele 

and Fernandes (2014). This is justified by the need to continue the research developed by these authors. The thicknesses used in 

the sensitivity analysis were based on the recommended values for the asphalt coating thickness by DNIT (2006). The resilience 

modules followed the same pattern of variations for thickness, so were adopted two values below and one above the modules of 

the pavement reference structure. The values assigned to thicknesses and resilience modules are also similar to those adopted by 

Shahji (2006). Table 1 displays reference pavement structure data, as well as values used in the sensitivity analysis. The 

characteristics of each material adopted in the layers of the structure used in this research are detailed in the study developed by 

Fontenele (2011). 

 

Table 1: Pavement structure and variations for sensitivity analysis. 

Layer Thickness (cm) Resilience Modulus (MPa) 

1 7.50; 10.00; 12.50*; 15.00 4,000 

2 15.00; 17.50; 20.00*; 22.50 276; 345; 400*; 483 

3 20.00; 22.50; 25.00*; 27.50 186; 197; 206*; 217 

Subgrade ∞ 48; 59; 70*; 79 

* Reference structure, value used only in ELSYM5 simulations. Source: Autors. 
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2.2 Analyses with ELSYM5 Computer Program 

ELSYM5 computer program allows for calculating tensions and deformations in flexible pavements. This study dealt 

with horizontal traction deformation in the asphalt coating lower fiber, and vertical compression deformation on top of the 

subgrade, respectively attributed to appearance of fatigue cracking and rutting. 

Traffic data used for simulations on ELSMY5 computer program referred to load spectra developed by Fontenele 

(2011). However, the load values inserted into said computer program were relative to the mean of load intervals considered in 

the load spectrum construction, in order to simulate spectrum application as a function of axle load. 

Deformations were determined at the centers of the loading surfaces and at equidistant points in relation to them. The 

distance between loading surface centers was 33 cm for double-wheel single axle, and 120 cm for double and triple tandem axle. 

By calculating maximum deformations, it was possible to determine the mechanistic-empirical Load Equivalency Factor 

(LEF) relative to cracking, considering the maximum traction deformation in the asphalt coating lower fiber, and relative to 

permanent deformations, considering the maximum compression deformation on top of the subgrade. To do so, Equation 1 was 

used, applying an exponent of 3.291 and 4, respectively, as done by Fernandes, Fabbri, Parreira, Sória and Gigante (2002) and 

by Fontenele and Fernandes (2014). 

   𝐿𝐸𝐹 = (
𝑝𝑖

𝑝0
)
𝑏

 (1) 

 In which: 

𝜌𝑖 Structural response corresponding to analysis load; 

𝜌0 Structural response corresponding to standard axle load; 

𝑏 3.291 for cracking, and 4.0 for rutting. 

 

LEF values were calculated for each load interval mean point of each vehicle class and attributed to the corresponding 

relative frequency values. LEFs were summed for each axle per vehicle analyzed so that weighted load equivalency factors were 

calculated for cracking and permanent deformation: LEFcracking and LEFrutting. 

By summing the LEFs of each axle that composes the vehicles analyzed, it was possible to calculate the mechanistic-

empirical Vehicle Factor (VF) for each vehicle analyzed. Then, with relative frequency application to vehicle classes and the 

sum of individual VFs, mean VFcracking and VFrutting were calculated for the fleet circulating on the road. 

Finally, the mechanistic-empirical Equivalent Standard Axle Load (ESAL) was calculated for the 20th project year (p), 

based on equations 2, 3 and 4, relative to fatigue cracking (ESALcracking) and permanent deformations on top of the subgrade 

(ESALrutting), considering an annual growth rate (t) of 4%, Vn the volume of traffic in year "n", c is the distribution factor of 

commercial vehicles in relation to commercial traffic (in both ways) in the design lane, a is the year of the design period. 

  𝑉𝑛 = 𝑉0 + 𝑛 ∙ 𝑡 (2) 

𝐸𝑆𝐴𝐿 = 365. 𝑉𝐹. 𝑉𝑛 . 𝑐  (3) 

𝐸𝑆𝐴𝐿 = ∑ 𝐸𝑆𝐴𝐿𝑎
𝑎=𝑝
𝑎=1   (4) 
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2.3 Analyses by AASHTO ME Method 

Distresses were predicted on MEPDG (version 1.100) and AASHTOWare® Pavement Design, version 2.1 (annual 

international license), considering the following pre-established performance criteria: initial International Roughness Index (IRI) 

equal to 1.0 m/km; final International Roughness Index of 4 m/km; Top-down cracking equal to 189 m/km; Class 3, bottom-up 

fatigue cracking equal to 25%; Thermal cross-sectional cracking equal to 189 m/km; 6.35 mm asphalt coating rutting; rutting in 

the whole pavement equal to 19.5 mm. The confidence level for performance criteria analysis was 90%. 

The distresses predicted and considered in this study were: top-down cracking, bottom-up cracking, asphalt coating, 

subgrade and total permanent deformation, and IRI. Input data relative to materials, traffic and weather were extracted from 

Fontenele (2011) and Fontenele and Fernandes Junior (2014). For layer material data, hierarchical level 3 was used, while level 

1 was adopted for traffic data, since the load spectra elaborated by the authors considered local data. 

ELSYM5 computer program allows for calculating tensions and deformations in flexible pavements. This study dealt 

with horizontal traction deformation in the asphalt coating lower fiber, and vertical compression deformation on top of the 

subgrade, respectively attributed to appearance 

 

2.4 Sensitivity Analyses on Mechanistic-Empirical (ME) Methods 

Performance predictions on the pavement analyzed with the aid of ELSYM5 computer program or distress magnitudes 

calculated through simulations on MPEDG software and AASHTOWare® Pavement Design were adjusted by multiple linear 

regression models, considering performance prediction as dependent variable, and project parameters as independent ones. The 

models obtained were tested statistically for significance through the F Test. 

Then, regression coefficients (RCs) were inspected, determining which parameters were significant to predict each 

distress analyzed. This assessment was performed by applying the T test. 

As in the research by Orobio (2010), for statistical analyses of both regression models and regression coefficients, a 

95% confidence interval and a 5% level of significance were adopted. Thus, those regression models or parameters whose p-

values were lower than the level of significance were deemed significant. The Statistica 10.0 free trial software was used to 

calculi p-value. 

For parameter hierarchization as to influence, the dependent and independent variables of the regression models were 

standardized, resulting in standardized regression coefficients (SRCs). This standardization allowed for a direct comparison of 

distress sensitivity as to input parameter variation. 

 

3. Results and Discussion  

This section presents and discusses results provided by the sensitivity analysis from simulations on ELSYM5, MEPDG 

and AASHTOWare® Pavement Design software, according to variations in the study layer properties. 

Comparisons between the adjustment performed for lifespan prediction, calculated from structural responses determined 

by ELSYM5, and the adjustment predicted by the regression models are displayed in Figure 1. 

 

  

http://dx.doi.org/10.33448/rsd-v10i8.17466


Research, Society and Development, v. 10, n. 8, e42610817466, 2021 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v10i8.17466 
 

 

7 

Figure 1: ESAL values calculated through results of simulations on ELSYM5 versus values predicted by multiple regression 

models. 

 

Source: Authors. 

 

In Figure 1, the line of equality indicates where results obtained from simulations on ELSYM5 and regression model 

results are equal. Thus, the vertical distance between this line and a point is the difference between the program output data and 

the value estimated by the model. Dotted lines demarcate the 95% confidence interval. 

The significance test applied to the regression model revealed a significant adjustment, proved by p-values (<0.0001) 

and by the coefficients of multiple determination (R2) of 0.86 and 0.77, which indicate that the models explain in 86% the 

variability of fatigue cracking and in 77% the variability of permanent deformation around its mean, thus a good regression 

model means that distresses variations can be explained by input variables. 

Comparisons between distress values estimated by MEPDG software and by AASHTOWare® Pavement Design and 

values predicted by adjusted regression models are exposed in Figures 2 and 3, respectively. 

 

  

http://dx.doi.org/10.33448/rsd-v10i8.17466


Research, Society and Development, v. 10, n. 8, e42610817466, 2021 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v10i8.17466 
 

 

8 

Figure 2: Values obtained from simulations on MEPDG software versus values predicted by multiple regression models 

 

Source: Authors. 
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Figure 3: Values obtained from simulations on AASHTOWare® Pavement Design software versus values predicted by multiple 

regression models. 

 

Source: Authors. 

 

The p-values < 0.0001, obtained for the hypothesis tests regarding the regression models, indicate that the adjustment 

was significant. Thus, it is possible to verify that the adjustment performed was significant for all cases, except for all coating 
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value calculated by the test was lower than 5%, and the coefficients of multiple determination (R2) were higher than 0.90, 

indicating that more than 90% of all variations in estimated distress values are explained by variations in input parameters. 

After determination of the significance of the multiple regression models adjusted to the results obtained with the 

simulations, the Regression Coefficients were standardized for comparative analysis as to performance prediction sensitivity 

according to input parameter variations. Figure 4 presents the SRC obtained for the models adjusted to estimated lifespan from 

analyses on ELSYM5. 

 

Figure 4: SRC for lifespan from analyses on ELSYM5.

 

Source: Authors. 

 

Pavement lifespan prediction was significantly sensitive to variations in coating and subbase thickness and in subgrade 

resilience modulus. The values obtained for the SRCs of these parameters were all negative, that is, as the values of parameters 

increase, the predicted ESAL number decreases. 

In contrast, Figures 5 and 6 show, respectively, the sensitivity analysis concerning influence of input parameters, for 

the study case, on each distress prediction by AASHTO ME method trial and commercial programs. 

The higher sensitivity of both programs in predicting all values of the distresses analyzed was verified for coating 

thickness variations. The parameter increase caused a decrease in distress measures because they have negative SRCs, except 

for coating permanent deformation predicted by AASHTOWare® Pavement Design, which has positive SRC, a fact that may be 

associated with changes in the program routine. 

It is possible to observe through the SRCs that, on both AASHTO ME method programs, bottom-up cracking was more 

sensitive to variations in coating thickness, base resilience modulus, subgrade resilience modulus, and base thickness, in that 

order. Subbase thickness and resilience modulus variations did not significantly affect the prediction of this distress magnitudes. 

Moreover, differences in predicted values for distresses with the use of the trial and commercial programs may be 

related to the fact that AASHTOWare® Pavement Design uses a higher number of weather clockwise data points compared to 

MEPDG software, as highlighted by Kim et al. (2013). The trial program has also gone through constant changes for error 

-1,00 -0,80 -0,60 -0,40 -0,20 0,00 0,20

Asphalt Concrete Thickness

Base Thickness

Subbase Thickness

Base Resilience Modulus

Subbase Resilience Modulus

Subgrade Resilience Modulus

CRP

*

*
*

*

* Significant Value

http://dx.doi.org/10.33448/rsd-v10i8.17466


Research, Society and Development, v. 10, n. 8, e42610817466, 2021 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v10i8.17466 
 

 

11 

solution and system adjustment until the commercial version was launched. Thus, these improvements may have affected some 

of the program internal routines concerning the consideration of some input parameters, leading to different results. 

It is common to verify differences between results of simulations in test and commercial versions of softwares, that 

happens because of improve development and errors corrections. That fact is not able to null the application of the software, just 

prove changes of the routine software. 

 

Figure 5: SRC for the magnitude of the distress predicted by MEPDG software. 

 

Source: Autors. 
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Figure 6: SRC for the magnitude of the distress predicted by AASHTOWare® Pavement Design. 

 

Source: Autors. 

 

Comparing both methods applied, it is possible to notice that, for the study case, significant parameters are inversely 

proportional to performance indicators. 

When it comes to sensitivity concerning fatigue cracking, for ELSYM5, only coating and subbase thickness was 

significant, while AASHTO ME method presents coating and base thickness, and base and subgrade resilience modulus as 

significant, for both programs. 

As for permanent deformations, ELSYM5 is sensitive only to variations in subbase thickness and in subgrade resilience 

modulus. On the other hand, considering for AASHTO ME method only deformations on top of the subgrade, besides these 

parameters, coating and base thicknesses and base resilience modulus are also significant for their prediction. 

Comparing results obtained with the simulations on ELSYM5 for permanent deformation and with total deformation 

values calculated by means of AASHTO ME method trial and commercial programs, ELSYM5 results showed sensitivity to two 

significant parameters: subbase thickness and subgrade resilience modulus. For MEPDG software, in its turn, the intensity of 

this distress was sensitive to variations in coating thickness and in base and subgrade resilient modules. Now, for 

AASHTOWare® Pavement Design, additionally to the same parameters already mentioned for MEPDG software, distress values 

were also sensitive to base thickness variations. 

The differences found between the methods studied may correlate with the fact that AASHTO ME method considers a 

higher number of parameters for performance estimates compared to those necessary for simulations on ELSYM5, besides using 

dynamic elastic modulus for asphalt mixture, which is estimated by means of a correlation equation calibrated to American 

mixtures, while a fixed value was adopted for this parameter in simulations on ELSYM5. 
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Traffic consideration may also have had an influence on the consideration of different parameters as significant, since, 

for simulations on ELSYM5, a way to simulate load spectrum application was adopted. However, AASHTO method does not 

state clearly how load spectra are applied to programs for pavement performance estimates. 

Another fact that may have been relevant is weather interference, considered in AASHTO ME method and disregarded 

in the method used for performance estimate with ELSYM5. 

As for the other distress magnitudes predicted only by AASHTO ME method programs, as displayed in Figures 5 and 

6, it is worth noting that bottom-up cracking was more sensitive to variations in coating thickness, base resilience modulus, 

subgrade resilience modulus, and base thickness. 

For coating permanent deformations, only on MEPDG software there was no significant influence of coating thickness 

on intensity prediction for this distress. For prediction of coating permanent deformation values, it is important to point out that, 

for AASHTOWare® Pavement Design, a coating thickness increase raised the distress value by 3%, contrary to expectations, 

since a thickness increase reduces tension concentration and, consequently, deformations decrease. 

Regarding prediction of IRI values for the 20th project year, it was possible to observe that, for MEPDG software, the 

greatest influence was that of coating thickness, followed by variations in base and subgrade resilience modulus. On the other 

hand, for AASHTOWare® Pavement Design, distress magnitudes were more sensitive to variations in coating thickness, base 

resilience modulus, base thickness, and subgrade resilience modulus. 

 

4. Conclusion  

With the method applied to the research, considering the specific boundary conditions adopted, it was possible to 

comprehend how pavement performance is influenced by variations in the parameters assessed using the ME approach. 

For the study case, about the approach using ELSYM5 program, coating thickness and subgrade resilience modulus are 

the parameters with the greatest influence on performance prediction. With the application of AASHTO ME method programs, 

it has been found that coating and base thicknesses and base and subgrade resilient moduli are more influent in predicting distress 

magnitudes. 

Furthermore, the research showed that small variations in the parameters studied may cause significant percentage 

changes in distresses predicted by the methods studied. However, there still is a need for deeper researches that take into 

consideration other combinations as to traffic, weather, properties of materials, etc., as well as analyses on factorial sensitivity, 

in order to better understand the inter-relation of independent variables in performance prediction models. 

Additionally, ELSYM5 program, for being a public domain software, proved to be a viable alternative to the application 

of a mechanistic-empirical pavement design method because, despite presenting a simplified analysis as to pavement tension 

and deformation, it can produce good results as to performance estimates. 

AASHTO ME method proved to be an interesting design tool due to its sensitivity to input data for the study case, but 

it has disadvantages relative to the program purchase costs. Also, for the method better performance, it is worth emphasizing the 

need for developing national and local calibration factors for projects in Brazilian conditions. 

Finally, it is worth stressing the importance of sensitivity analyses before application of any program for ME pavement 

design. Oftentimes, the methods used are adapted and require adjustments and validations for the conditions in which they will 

be applied. Moreover, transfer functions are calibrated to distress estimates usually by means of national databases, which may 

not reflect an optimal condition for a regional project, requiring sensitivity studies in order to calibrate coefficients and validate 

the application of an ME method. It should be noted that the programs support decision making; therefore, knowledge about 

their strengths and limitations is of paramount importance for their use to be able to raise the quality of projects developed in 

engineering practice. 
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