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Abstract 

Objective: This study aimed to evaluate the relations between orbit-related structures and sex, age and skeletal 

deformities using cone-beam computed tomography (CBCT). Methods: This retrospective study evaluated 216 

consecutive CBCT scans of patients, who were divided according to: sex (male, n=105; female, n=111), age (A1: 18-

32 years, n=71; A2: 33-47 years, n=78; A3: 48-62 years, n=67), and skeletal deformities (Class I, n=70; Class II, n=75; 

Class III, n=71). The supraorbital foramen (SOF) location, volume of orbit, optic canal (OC) and infraorbital canal 

(IOC) were evaluated. Results were analyzed using the Gamma model test. The Tukey-Kramer post-hoc test was used 

to compare the variables with three factors (p<0.05). Results: The IOC volume showed higher values for male, A3 and 

class I patients. The SOF location and the orbital volume also showed higher values for male patients. Regarding the 

volume of CO, it showed higher values for male and class I patients. Conclusions: According to our results, sex has 

been shown to have a significant influence on orbit-related structures. Age and skeletal deformities also influenced the 

volume of IOC and OC. These results eventually help the clinical practice, being useful for orbital reconstruction 

surgeries, anthropological studies, gender identification and identification of susceptibility to pathological conditions 

related to sexual dimorphism. 

Keywords: Cone-beam computed tomography; Orbit; Sex characteristic. 
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Resumo 

Objetivo: Este estudo teve como objetivo avaliar as relações entre estruturas orbitárias com o sexo, idade e deformidades 

esqueléticas por meio da tomografia computadorizada de feixe cônico (TCFC). Métodos: Este estudo retrospectivo 

avaliou 216 imagens consecutivas de TCFC de pacientes, que foram divididos de acordo com: sexo (masculino, n = 

105; feminino, n = 111), idade (A1: 18-32 anos, n = 71; A2: 33 -47 anos, n = 78; A3: 48-62 anos, n = 67) e deformidades 

esqueléticas (Classe I, n = 70; Classe II, n = 75; Classe III, n = 71). Foram avaliados a localização do forame supraorbital 

(SOF), o volume da órbita, o canal óptico (CO) e o canal infraorbital (IOC). Os resultados foram analisados usando o 

teste do modelo Gamma. O teste post-hoc de Tukey-Kramer foi utilizado para comparar as variáveis com três fatores 

(p <0,05). Resultados: O volume do IOC apresentou valores maiores para os pacientes do sexo masculino, A3 e classe 

I. A localização do SOF e o volume orbital também apresentaram valores maiores para os pacientes do sexo masculino. 

Em relação ao volume de CO, este apresentou valores maiores para pacientes do sexo masculino e classe I. Conclusões: 

De acordo com nossos resultados, o sexo demonstrou ter uma influência significativa nas estruturas relacionadas à 

órbita. A idade e as deformidades esqueléticas também influenciaram o volume do COI e do CO. Esses resultados 

acabam auxiliando a prática clínica, sendo úteis para cirurgias de reconstrução orbitária, estudos antropológicos, 

identificação de gênero e identificação de suscetibilidade a condições patológicas relacionadas ao dimorfismo sexual. 

Keywords: Tomografia computadorizada de feixe cônico; Órbita; Dimorfismo sexual. 

 

Resumen 

Objetivo: Este estudio tuvo como objetivo evaluar las relaciones entre las estructuras relacionadas con la órbita y el 

sexo, la edad y las deformidades esqueléticas mediante tomografía computarizada de haz cónico (CBCT). Métodos: 

Este estudio retrospectivo evaluó 216 exploraciones CBCT consecutivas de pacientes, que se dividieron según: sexo 

(hombre, n = 105; mujer, n = 111), edad (A1: 18-32 años, n = 71; A2: 33 -47 años, n = 78; A3: 48-62 años, n = 67) y 

deformidades esqueléticas (Clase I, n = 70; Clase II, n = 75; Clase III, n = 71). Se evaluó la ubicación del foramen 

supraorbitario (SOF), el volumen de la órbita, el canal óptico (OC) y el canal infraorbitario (IOC). Los resultados se 

analizaron mediante la prueba del modelo Gamma. Se utilizó la prueba post-hoc de Tukey-Kramer para comparar las 

variables con tres factores (p <0.05). Resultados: El volumen de IOC mostró valores más altos para los pacientes de 

sexo masculino, A3 y clase I. La ubicación de la SOF y el volumen orbitario también mostraron valores más altos para 

los pacientes masculinos. En cuanto al volumen de CO, mostró valores más altos para los pacientes del sexo masculino 

y clase I. Conclusiones: De acuerdo con nuestros resultados, se ha demostrado que el sexo tiene una influencia 

significativa en las estructuras relacionadas con la órbita. La edad y las deformidades esqueléticas también influyeron 

en el volumen de COI y CO. Estos resultados eventualmente ayudan a la práctica clínica, siendo útiles para cirugías de 

reconstrucción orbitaria, estudios antropológicos, identificación de género e identificación de susceptibilidad a 

condiciones patológicas relacionadas con el dimorfismo sexual. 

Keywords: Tomografía computarizada de haz cónico; Orbita; Caracteres sexuales. 

 

1. Introduction 

The orbit is formed by the maxilla, frontal ethmoid, lacrimal, zygoma, sphenoid and palatine (Oppenheimer, Monson 

& Buchman, 2013). These are distributed along its walls. Its upper part consists of a part of the frontal bone and the lesser wing 

sphenoid; the inferior by the orbital plate of the maxilla, the orbital process of the zygoma and the orbital process of the palatine 

bone (Grob, Yonkers & Tao, 2017). Its medial wall is composed of the frontal process of the maxilla, orbital lamina of the 

ethmoid, orbital surface of the lacrimal bone, a part of the sphenoid bone. Its lateral wall encompasses the orbital process of 

zygoma and the orbital surface of the greater wing of the sphenoid (Norton, 2007; Hiatt & Gartner, 2001). 

Orbital fractures are one of the most common injuries in midface trauma and can lead to significant functional and 

aesthetic complications (Manana, Odhiambo, Chindia & Koech, 2017). Orbital fractures may occur alone or in combination with 

other midfacial fractures, including fractures of zygomatic complex, naso-orbit-ethmoidal, frontal bone/orbital roof, Le Fort II 

and III (Dubois, Steenen, Gooris, Mourits & Becking, 2015). Isolated orbital fractures represent between 4% to 16% of facial 

skeletal injuries, while combined orbital fractures represent between 30% to 55% (Manana et al., 2017). Patients with fractures 

involving the orbit usually have concomitant injuries to the eyeball and/or the surrounding neurovascular structures, which 

include optic, infraorbital and supraorbital nerves (Sinanoglu, Orhan, Kursun, Inceoglu & Oztas, 2016). Thus, as the extent of 

orbital fractures increases, the risk of iatrogenic injury to neural and vascular structures also increases (Sinanoglu et al., 2016), 

making the treatment of orbital fractures challenging and complex (Andrades, Cuevas, Hernández, Danilla & Villalobos, 2018; 

Manolidis, Weeks, Kirby, Scarlett & Hollier, 2002). 

http://dx.doi.org/10.33448/rsd-v10i11.19381
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Visual impairment, hypoesthesia of the infraorbital nerve, enophthalmia, irritating and persistent diplopia are considered 

complications of orbital fractures that are not managed properly (Manana et al., 2017). To avoid unwanted clinical results, orbital 

reconstruction surgery requires a complete assessment of orbital defects and the precise restoration of orbital dimensions and 

their surrounding structures (Yang & Liao, 2019). Therefore, a detailed preoperative radiograph evaluation and knowledge of 

these anatomical structures are necessary to obtain ideal results (Akdemir, Tekdemir & Altin, 2004). 

For this reason, knowledge of the orbital volume and the relationship with clinical variables such as age and sex are 

important in the surgical decision-making process (Andrades et al., 2018). Furthermore, Friedrich et al. (2016) concluded that 

orbital volume measurements should be included in the follow-up control with special consideration of age- and gender-

dependent changes in this parameter in orbital reconstructive surgeries. To the best of our knowledge, there are no studies that 

have evaluated the orbital volume and the structures that surround the orbit, such as the optic canal (OC), the infraorbital canal 

(IOC), the supraorbital foramen (SOF), and their relationship between sex, age and skeletal deformities. Thus, the aim of this 

study was to study the relations between orbit-related structures (orbital volume, OC volume, IOC volume, SOF location) and 

sex, age and skeletal deformities using cone-beam computed tomography (CBCT). The null hypothesis was that the orbit-related 

structures evaluated do not change according to sex, age and skeletal deformities. 

 

2. Materials and Methods 

This retrospective study was approved by the Ethics Committee for the Research Involving Human Beings of the State 

University of Maringá, Maringá, Brazil (CAAE 66291717.4.0000.0104). Due to the retrospective nature of this study, signed 

informed consent was not required. This study was also conducted according to the recommendations of the Strengthening the 

Reporting of Observational Studies in Epidemiology (STROBE) guidelines (von Elm, 2007). 

Patients of both sexes, >18 years old and diagnosed with skeletal deformities (class I, II and III) were included in this 

study. Skeletal deformities were classified as class I (0º< ANB <4º), class II (ANB ≥ 4º), and class III (ANB < 0º) (Steiner, 

1953). The exclusion criteria adopted in this study were: patients who underwent orthognathic surgery or any surgery on the 

middle third of the face, which could compromise the analysis of the structures of interest; patients who have craniofacial 

syndromes and congenital craniofacial anomalies. 

The selected patients were divided according to: sex - male (M) and female (F); age - 18-32 years (A1), 33-47 years 

(A2) and 48-62 years (A3); and skeletal deformities - Class I (I); Class II (II); Class III (III). 

Consecutive CBCT scans, which were requested for orthodontic or orthognathic surgery diagnosis and treatment 

planning, of 216 patients were obtained. All CBCT scans were carried out by the same specialist in oral and maxillofacial 

radiology and acquired with the i-CAT Next Generation® equipment (Imaging Sciences International, Hatfield, PA, USA). 

Volumes were reconstructed with an isometric voxel size of acquisition of 0.30 mm, FOV (Field of View) of 17 x 23 cm, tube 

tension of 120 kVp, and tube current of 3-8 mA. All CBCT scans were performed according to a strictly standardized scanning 

protocol; the patients were instructed to remain seated, adopt a natural head position, breathe lightly with their tongues and lips 

at rest, and stabilize their heads on a head and chin support.  

The CBCTs were transferred into the Dolphin Imaging software version 11.95 (Dolphin Imaging & Management 

Solutions, Chatsworth, CA, USA) in DICOM (Digital Imaging and Communication in Medicine) format. The Dolphin software 

contains a tool for semi-automatic segmentation of the airways and its volume measurement, which is called sinus/airway. The 

sinus/airway tool was used to analyze the volume of the orbit, OC and IOC. This tool requires the user to define an area of 

interest by using some steps. First, the user must define, manually, the structure boundaries in the sagittal, axial and coronal 

reconstructions. Second, the user must place, manually, seed points in the destination compartment of the region of interest. The 

target volume will be filled automatically from those seed points; and all areas with similar grayscale intensity will also be 

http://dx.doi.org/10.33448/rsd-v10i11.19381
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selected, depending on the Hounsfield unit. Consequently, the threshold value must be determined. This limit defines a density 

range which will be included in the measured volume (de Water, Saridin, Bouw,  Murawska & Koudstaal, 2014). The Hounsfield 

scale was adjusted and standardized, using the value of 400 HU for orbital volume (Nout et al., 2012), and the value of 70 HU 

for the OC and IOC volume.  

In our study, the limits of each structure were standardized. For the orbital measurement, upper, lower, lateral, and 

medial limits are determined by the bone walls of the orbit. The anterior orbital margin was defined by a line between the most 

anterior point of the lateral bone limit and the most anterior point of the anterior lacrimal crest. The posterior limit is defined by 

the most anterior portion of the optical canal (Andrades et al., 2018; Friedrich, Bruhn & Lohse, 2016). For the OC measurement, 

the anterior and posterior bone limits of the canal were traced, taking into account the bone point defined more anteriorly and 

posteriorly in the minor wing of the sphenoid bone (Friedrich et al., 2016). For the IOC measurement, the anterior bone limits 

begin in the infraorbital foramen and the posterior margin of the IOC covered by the bone of the orbital floor (Fontolliet, 

Bornstein & Von Arx, 2019) (Figure 1).  

 

Figure. 1. Delimitation and volume measurement (mm3) of the orbit and surrounding structures. (A) Orbit. (B) Optic canal. (C) 

Infraorbital canal. 

 

Source: Authors. 

 

For the location of the SOF, the nasion point (N) was used as a reference. The distance from the center of the foramen 

to N was assessed on the right side (RN) and the left side (LN) (Sinanoglu et al., 2016) (Figure 2).  

 

  

http://dx.doi.org/10.33448/rsd-v10i11.19381
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Figure 2. Illustration of the SOF location using nasion (N) as a reference. From N to SOF on the right side (RN) and left side 

(LN). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Authors. 

 

The images obtained were analyzed by one specialist in oral radiology, with experience in the analysis of tomographic 

images and the manipulation of image software. For the calibration process, 20% of CBCT scans were selected randomly and 

measurements were replicated twice with an interval of 15 days. Intra-examiner agreement was assessed by intraclass correlation 

coefficient (ICC). The generalized linear models (Gamma model) were used to evaluate the outcome variables (orbital volume, 

OC volume, IOC volume and SOF location) with sex, age and skeletal deformities. The Tukey-Kramer post-hoc test was used 

to compare the variables with three factors (age and skeletal deformities). All statistical tests were analyzed with R 3.1 software 

for Windows (R-project for statistical computing) at a 5% level of significance.  

 

3. Results 

The ICC value was good for all measurements, ranging from 0.732 to 0.941 (Koo & Li, 2016). The 216 scans were 

composed of 105 male and 111 female patients. Seventy-one individuals were between 18-32 years old; 78 were between 33-47 

and 67 between 48-62. Regarding skeletal deformities, 70 individuals were classified as class I, 75 class II and 71 class III. 

All the outcome variables (orbital volume, OC volume, IOC volume and SOF location) did not show statistically 

significant difference in terms of laterality (p>0.05). Therefore, these variables were not analyzed separately. The IOC volume 

displayed statistically significant difference between sex, age, and skeletal deformities. Male patients showed a larger volume 

when compared to female. The older group (A3) also exhibited a larger volume than the younger groups (A1 and A2) (Table 1). 

In addition, class I patients presented a statistically larger volume than class II and III (Table 2). 

 Significant statistical differences were noted between sex in SOF location and orbit volume, with higher values for 

male patients. Regarding the OC volume, significant statistical differences were observed between sex and skeletal deformities. 

Patients diagnosed with class I presented a larger volume than class II and class III (Table 2). 

 

  

http://dx.doi.org/10.33448/rsd-v10i11.19381
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Table 1. Mean, standard deviation and p-values of SOF location and the volume of orbit, IOC and OC according to sex, age, 

and skeletal deformities. 

 
Male 

Mean±SD 

Female 

Mean±SD 
p-value 

A1 

Mean±SD 

A2 

Mean±SD 

A3 

Mean±SD 

p-value 

A1-A2 

p-value 

A1-A3 

p-value 

A2-A3 

Orbit volume 24586±2713 21685±1860 0.00* 23125±2702 23454±2810 23059±2445 0.33 0.63 0.32 

IOC volume 32.5±12.4 26.6±5.6 0.00* 27.2±7.3 28.3±9.1 33.51±12.0 0.35 0.00* 0.00** 

OC volume 113.5±19.7 105±14.1 0.00* 108.4±15.3 110.2±16.2 108.8±21.0 0.35 0.76 0.43 

SOF distance 20.0±2.4 19.0±3.6 0.00* 19.3±3.7 19.3±2.8 19.8±2.6 0.79 0.17 0.22 

*p-value based on Gamma model; **p-value based on Tukey-Kramer test. SD: standard deviation; M: male; F: female; A1: 18-32 years; A2: 

33-47 years; A3: 48-62 years; IOC: infraorbital canal; SOF: supraorbital foramen; OC: optic canal. Source: Authors. 
 

 

Table 2. Mean, standard deviation and p-values of SOF location and the volume of orbit, IOC and OC according to sex, age, 

and skeletal deformities. 

 
Class I 

Mean±SD 

Class II 

Mean±SD 

Class III 

Mean±SD 

p-value 

I-II 

p-value 

I-III 

p-value 

II-III 

Orbit volume 23451±2821 22890±2368 23351±2786 0.09 0.72 0.37 

IOC volume 32.5±14 28.6±7.3 27.4±6.4 0.00* 0.00* 0.51 

OC volume 116.8±20.9 106.4±12.7 104.4±15.7 0.00* 0.00* 0.38 
SOF distance 19.2±2.6 19.4±3.3 19.8±3.3 0.35 0.05 0.55 

*p-value based on Gamma model; **p-value based on Tukey-Kramer test. SD: standard deviation; Class I; II: Class II; III: Class III; IOC: 

infraorbital canal; SOF: supraorbital foramen; OC: optic canal. Source: Authors. 

 

4. Discussion 

All the outcome variables of our study showed statistically significant differences between sex. This can be ascribed to 

the fact that the analyzed structures present sexual dimorphism, which is in agreement with previous studies (Friedrich et al., 

2016; Graillon, Boulze, Adalian, Loundou & Guyot, 2017; Erkoç, Öztoprak, Gümüş & Okur, 2015). According to Erkoç et al. 

(2015), the axial skeleton is larger in men than in women, which also affects the orbit and the surrounding structures. Thus, this 

can be useful for orbital reconstruction surgeries, anthropological studies and gender identification. Furthermore, susceptibility 

to pathological conditions has been found in women as a result of these size differences, such as the risk of optic nerve 

compression and myopia, especially in patients with skeletal deformities (Erkoç et al., 2015). 

Identifying and preserving supraorbital and infraorbital foramina are important objectives in surgical and local 

anesthetic procedures (Aziz, Marchena, & Puran, 2000). In our study, we analyzed the IOC volume, which was higher in the 

older group (48-62 years) when compared to other age groups. Although no studies had analyzed the IOC volume per se, our 

results are in line with Fontolliet et al. (2019), which used linear measures to estimate the IOC. They reported that the length and 

height of the IOC were significantly greater in patients older than 61 years (Fontolliet et al., 2019). Accordingly, the increase in 

the IOC volume with age can be attributed to the posterior displacement of the maxilla and the lateral and inferior orbital border, 

which occurs in facial skeletal aging (Lambros, 2007; Lim, Min, Lee & Hong, 2016). In addition, patients in class I had higher 

IOC volume values than those in classes II and III, showing that in addition to age and sex influence the anatomy of the IOC, 

skeletal deformities should be considered.  

Leaving vital structures such as the optic nerve intact is a challenge in the restoration of complex anatomical structures 

in craniofacial reconstructive surgery (Kim, Jung, Kim, Lee & Kim, 2013). In our study, we analyzed the volume of the OC in 

patients with different skeletal deformities, which makes our study unprecedented and may contribute to the characterization of 

this structure. Our results show that OC volume presents statistical differences according to skeletal deformities, being higher in 

class I patients than in class II and III patients. 

The orbital volume in our study did not change significantly with age. Diverging from previous studies, which reported 

that the orbital volume increases with age in a continuous way (Ugradar & Lambros, 2019; Friedrich et al., 2016). The results of 

http://dx.doi.org/10.33448/rsd-v10i11.19381
https://pubmed.ncbi.nlm.nih.gov/?sort=date&size=200&term=Graillon+N&cauthor_id=28330571
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https://pubmed.ncbi.nlm.nih.gov/?sort=date&size=200&term=Adalian+P&cauthor_id=28330571
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Kim+IK&cauthor_id=23851752
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our study suggest that the bone of the orbit is dynamic throughout adult life and the clinical signs of periorbital aging maybe not 

due to orbital bone changes. The same explanation can be attributed to the OC volume in our study, suggesting that just as orbital 

bones are dynamic throughout adulthood.  

In our study, the SOF location showed a non-significant increase in patients aged 48-62 years. Lim et al. (2016) observed 

that older patients displayed the supraorbital foramen significantly more distant from the midline, which indicates lateral 

translation of the frontal and maxillary bones with aging.  

In our study, the measurement of the orbital volume was carried out due the fact that craniofacial reconstructive surgery 

has the fundamental principle of restoring facial symmetry, reconstructing the defective orbital wall, and restoring the appropriate 

orbital volume to mitigate restricted eye movements (Kim et al., 2013). However, differences in the orbital volume in relation to 

other studies have been noticed, which may be due, at least in part, to the different image sources used. Most studies were 

performed with computed tomography (Andrades et al., 2018; Diaconu et al., 2017). Currently, CBCT has been providing useful 

data for defining orbital pathologies, calculating orbital reconstructions, or anthropological studies (Friedrich et al., 2016). 

Moreover, the use of CBCT is considered adequate for the evaluation of the orbital volume, as long as reference points are 

defined to a closed surface for the calculations (Friedrich et al., 2016). For this reason, CBCTs were used in our study to assess 

the orbit and its adjacent structures, taking into account the standardization of bone limitations of all analyzed structures. This 

may also be responsible for the differences observed in the values of the orbital volume and other structures among the studies. 

It is worth mentioning that our sample size is remarkable and very standardized, since all CBCT scans were cautiously 

conducted by a single radiologist with a standardized scanning protocol. However, the comparison between studies that evaluated 

orbit-related structures has been proven to be difficult, because there is no consensus in the literature with the methodologies. 

Previous studies used different delimitations of orbital borders and surrounding structures for measurement, which made it 

difficult to compare the volumetric data. Furthermore, the literature regarding the orbit and the surrounding structures is still 

scarce, especially with respect to skeletal deformities. The results of this study bring a new perspective for the anatomy of this 

region.  

 

5. Conclusion 

According to our results, sex has been shown to have a significant influence on orbit-related structures. Age and skeletal 

deformities also influenced the volume of IOC and OC. These results eventually help the clinical pratice, since this information 

could be useful for orbital reconstruction surgeries, anthropological studies, gender identification and identification of 

susceptibility to pathological conditions related to sexual dimorphism.  
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