
Research, Society and Development, v. 10, n. 12, e403101220595, 2021 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v10i12.20595 

 

 

1 

Diffusive properties of colloidal charged particles in a quasi-one-dimensional 

confinement 

Propriedades difusivas de partículas coloidais carregadas em um confinamento quasi-

unidimensional 

Propiedades difusivas de partículas coloidales cargadas en confinamiento cuasi-unidimensional 

 

Received: 09/14/2021 | Reviewed: 09/19/2021 | Accept: 09/23/2021| Published: 09/25/2021 

 

Levi Rodrigues Leite 

ORCID: https://orcid.org/0000-0003-3986-3551 

Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Brasil 

E-mail: levi@unilab.edu.br 
Jorge Luiz Bezerra de Araújo 

ORCID: https://orcid.org/0000-0001-5101-6246 

Universidade de Fortaleza, Brasil 
E-mail: jorgearaujo@unifor.br 

Leandro Jader Pitombeira Xavier 

ORCID: https://orcid.org/0000-0003-0458-9994 

Instituto Federal do Ceará, Brasil 
E-mail: leandro.jader@ifce.edu.br 

Vagner Henrique Loiola Bessa 

ORCID: https://orcid.org/0000-0002-7584-262X 
Instituto Federal do Ceará, Brasil 

E-mail: vagner.bessa@ifce.edu.br 
João Cláudio Nunes Carvalho 

ORCID: https://orcid.org/0000-0001-8619-0869 
Instituto Federal do Ceará, Brasil 

E-mail: joao.carvalho@ifce.edu.br 
Diego de Lucena Camarão 

ORCID: https://orcid.org/0000-0002-3497-4968 

Universidade de Fortaleza, Brasil 

E-mail: diego@fisica.ufc.br 
 

Abstract 

Diffusive properties of colloidal crystals in a quasi-one-dimensional channel are studied using numerical simulations. 

In order to study the influence of the attractive interaction between particles, it was introduced as an artificial 

dimensionless parameter β in the attractive term of the interaction potential. Changing the value of β, we can tune the 

effect of attraction between particles. We show that charged particles can change their mobility and the diffusion 

exponent of a one-chain like system. Variation on exponent diffusion can be induced by tuning the attractive part of 

interaction potential, making possible the existence of diffusive regimes between single-file diffusion (SFD) and 

normal diffusion, without changing confinement strength. System stoichiometry was changed, imposing particles in 

different arrangements in small clusters, which varies the diffusive behaviour. If stoichiometry is different from 1:1, it 

is possible to have particles with equal charges but with different mobilities. Another important observation is that 

mean-square displacement (MSD) for different charges is different for different values. 

Keywords: Diffusion; Colloids; Single-file. 
 

Resumo  

Propriedades difusivas de cristais coloidais em um canal quase unidimensional são estudadas usando simulações 

numéricas. Para estudar a influência da interação atrativa entre partículas, foi introduzido como um parâmetro 

adimensional artificial β no termo atrativo do potencial de interação. Alterando o valor de β, podemos ajustar o efeito 

da atração entre as partículas. Mostramos que partículas carregadas podem mudar sua mobilidade e o expoente de 

difusão de um sistema semelhante a uma cadeia. A variação na difusão do expoente pode ser induzida pelo ajuste da 

parte atrativa do potencial de interação, possibilitando a existência de regimes difusivos entre a difusão single-file 

(SFD) e a difusão normal, sem alterar a força de confinamento. A estequiometria do sistema foi alterada, impondo 

partículas em diferentes arranjos em pequenos aglomerados, o que varia o comportamento difusivo. Se a 

estequiometria for diferente de 1:1, é possível ter partículas com cargas iguais, mas com mobilidades diferentes. Outra 

observação importante é que o desvio quadrático médio (MSD) para cargas diferentes é diferente para valores 

diferentes.  

Palavras-chave: Difusão; Colóides; Single-file. 
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Resumen  

Las propiedades de difusión de los cristales coloidales en un canal cuasi unidimensional se estudian mediante 

simulaciones numéricas. Para estudiar la influencia de la interacción atractiva entre partículas, se introdujo como un 

parámetro adimensional artificial β en el término atractivo del potencial de interacción. Cambiando el valor de β, 

podemos sintonizar el efecto de atracción entre partículas. Mostramos que las partículas cargadas pueden cambiar su 

movilidad y el exponente de difusión de un sistema similar a una cadena. La variación en la difusión del exponente se 

puede inducir sintonizando la parte atractiva del potencial de interacción, lo que hace posible la existencia de 

regímenes de difusión entre la difusión en una sola fila (SFD) y la difusión normal, sin cambiar la fuerza del 

confinamiento. Se modificó la estequiometría del sistema, imponiendo partículas en diferentes arreglos en pequeños 

racimos, lo que varía el comportamiento difusivo. Si la estequiometría es diferente de 1:1, es posible tener partículas 

con cargas iguales pero con diferentes movilidades. Otra observación importante es que el desplazamiento cuadrático 

medio (MSD) para diferentes cargas es diferente para diferentes valores. 

Palabras clave: Difusión; Coloides; Single-file. 
 

1. Introduction  

Diffusion can be defined as the movement of particles under influence of a concentration gradient. When particles are 

moving in space with reduced dimensionality, or under the influence of an external confinement, interesting diffusion 

behaviours can emerge. A particular case of confined geometry happens when particles are restricted to move along a line in a 

channel so narrow that particles cannot cross each other, so the sequence of particle labels does not change in time. This 

impossibility of particles crossing induces a collective motion of particles in the same direction. In this situation, anomalous 

diffusion can be observed (Harris, 1965) such that the mean-square displacement, 

 

This result is in contrast with normal diffusion, where the mean-square displacement grows proportional to time. This 

phenomenon is called Single-file diffusion (SFD), and it has been studied in different contexts in monodisperse systems. M. 

Kollmann (Kollmann, 2003) proposed an analytical approach in which SFD regimes appear independently of the nature of 

interactions for homogeneous systems in the fluid state. Guthmann (Coupier et al, 2006) and Nelissen et al (Nelissen et al, 

2007) showed that interaction potential can lead to different subdiffusive behavior, with diffusive exponent lower than the 

square root of time. From now on different studies of interaction potential appear: dipolar, Yukawa, periodic substrate, etc. 

(Lucena et al, 2012; Carvalho et al, 2012; Carvalho et al, 2011) for different damping values (Delfau et al, 2011) and different 

connement intensities and traps in a monodisperse system of interacting particles (Lucena et al, 2012). Single-file diffusion are 

also present in nature in many different situations such as diffusion experiments with molecules of zeolite (Meier, 1992), in 

colloids (Konig, 2005; Wei, 2000), charged macroscopic beads (Coupier et al, 2006) and water through molecular-sized 

channels in membranes (Hernandez, 1992; Morais-Cabral et al, 2001; Doyle et al, 1998) and for magnetic particles and dipoles 

(Lucena et al, 2014; Galvan-Moya et al, 2014). In SFD, particles are correlated because particle movement induces other 

particles to move together.  

When potential interactions are a long-ranged attraction, colloidal particles tend to aggregate. M. E. Leunissen et al 

showed that the electrostatic interaction between oppositely charged particles can be tuned such that large ionic colloidal 

crystals can form stable structures. It was found that in contrast to atomic systems, the stoichiometry of colloidal crystals is not 

dictated by charge neutrality; this allows the existence of a remarkable diversity of new binary structures (Leunissen et al, 

2005). Advances in experimental and numerical techniques allowed a considerable improvement to create and study new 

cristalyne structures. An interesting property of binary crystals is the self-organization in a two-dimensional (2D) binary 

colloidal system. Recently, a rich variety of binary superlattices were obtained experimentally (Leunissen et al, 2005; 

Shevchenko, 2006), when for different stoichiometries, new crystalline superlattices appeared. In this work we study diffusive 
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properties of colloidal crystals under a parabolic confinement, for three different stoichiometries. 

 

2. Methodology 

A. Colloidal crystals 

 Our methodology consists of creating a program in FORTRAN language which simulates colloids interacting one 

another in a box with periodic boundary conditions, to simulate an infinite system. The numerical technique applied is called 

Molecular Dynamics. Molecular dynamics simulations can be divided into the following steps: (1) put particles in a simulation 

box; (2) calculate the force that particles exerts one each other; (3) integrate equations of motion (in this work we used Euler 

method) and (4) calculation of the properties in which we are interested (Frenkel & Smit, 2002). 

Our model of colloidal crystal consists of N+ = 50 particles with positive charge q+ and N- = 50 particles with 

negative charge q-. The system as a whole is electrically neutral, i.e., N+q+  + N-q- = 0. The movement of the N = N+ + N- 

particles in the xy-plane is restricted along the y direction by a one-dimensional parabolic potential. Since the parabolic 

confinement allows particles to occupy regions of two-dimensional space with y different from 0 the present system is usually 

called quasi-one-dimensional (q1D). The equation of motion which describe the movement of the i-th colloid is given by the 

Langevin equation 

 

where m is the mass of the each particle,  is the damping constant,  and 

is a random Gaussian force with known properties 

 

 

where  is the Boltzmann constant and T is the absolute temperature. 

The interparticle interaction pair potential is given by 

 

 

where  is the dielectric constant of the medium the particles are moving in,  is the Debye screening length, qi is the 

charge of particle i, is the separation distance between particles i and j. The first term on the r.h.s. 

(right-hand side) of Eq. (4) is the Debye-Hückel (or Yukawa) potential. The second term in the same equation is a soft-core 

repulsion.  defines the distance between the centers of the particles i and j when those particles are in contact and B is an 

energy parameter in order to prevent particles from coalescing into a single point. The soft-core repulsion is introduced to 

avoid particle-particle overlap, since the product qi x qj can be negative depending on the modulus of the charge of each 

particle. 

The external one-dimensional parabolic potential confinement is modelled by an harmonic trap  
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where  is the strength of the parabolic external confinement and yi is the y coordinate of the ith particle. 

 

B. Dimensionless units and numerical integration 

We consider q+ = +Zq and q- = -q, where q+ and q- is the charge of positive and negative particles, respectively. We 

choose q as unit charge, and Z = q+/q- is therefore the stoichiometry. Considering that particles have a constant charge surface 

density , and that a is the radius of the negative particle -q, we have 

and .  is the sum of positive particles radius, 

is the sum of negative particles radius and  is the sum of a positive with a negative particle radius (see Fig.1). 

 

Figure 1 - Schematic representation of model system. Positive particles have radius R+ and negative particles have radius R-. 

The sum of particles radius are represented by  letter, where  and 

.   

 

 

 

 

 

 

 

 

Source: Image created by the author. 

 

By choosing the unit of distance as a and the unit of energy as , the dimensionless (tilde) interparticle 

interaction potential is written as 
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where ,  and  . The dimensionless (tilde) external one-dimensional parabolic 

potential confinement is written as  

 

where is the dimensionless parameter which regulates the external confinement potential. 

 

In order to study the influence of the attractive interaction between particles, note that it was introduced as an artificial 

dimensionless parameter β in the last term of equation (6). Changing the value of β, we can tune the effect of attraction 

between particles.  

 

Furthermore, the unit of time is given by . In our simulations, we use 

and  in all 

cases, except when specified otherwise. In all simulations, density was defined as the ratio between number of particles and the 

box size, and its value is always equal to 0.2. From this point on, we drop the tilde notation and all quantities are 

dimensionless. 

The numerical integration of the dimensionless form of Eq. (2) is given by the Gillespie (Gillespie, 1996(54); 

Gillespie, 1996(64)) algorithm 

 

 

to update the particles' velocities, where  is the dimensionless time step and  is the dimensionless form of 

the random Gaussian force (Eq. (3)). The position of the particle is then updated using the formula  

 

 

3. Results and Discussion 

A. Mean-Square Displacement 

In this section, we present our results about particles' diffusive regimes. In order to study it, we calculated MSD as 

follows: 
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where N is the number of particles,  represents a time average over the time interval , and x is the particle position.  

 

In general it is possible to distinguish three different regimes: (i) a short-time regime (STR), where particles diffuse 

ballistically (i.e., ) (ii) an intermediate time regime (ITR) where particles start to interact and change their 

mobilities and (iii) a long-time regime (LTR), where particles diffuse as a whole body. In the following subsections these three 

different steps are explained and its relationship with charges in different stoichiometries. 

 

B. 1:1 Stoichiometry 

For stoichiometry 1:1, we have N/2 of positive particles and N/2 of negative particles. We can observe that these 

particles have the same size. MSD calculations are shown in Figure 2. 

 

Figure 2 - MSD calculation for five different β values (from 0 to 1.0, with variation of β by 0.25). Dashed line illustrates 

normal diffusion regime and dotted lines illustrates single-file diffusion regime. Dashed-dotted line shows that for β = 0.75, 

diffusion exponent is 0.7, and for β = 1.00 diffusion exponent is 0.6. 

 

Source: Image created by the author. 

 

For STR, we always obtain a ballistic regime, for all values of β. But if we look at ITR we have different situations 
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for different β values. For β = 0.0, 0.25 and 0.50, we observe that particles reach the SFD regime. But when β = 0.75, we have 

that diffusion exponent is equal to 0.7, and if β = 1.0 (repulsion and attraction in equal intensities) we have a diffusion 

exponent equal to 0.6. This result shows that in conned channel-like geometries, it is possible to obtain exponents between 1.0 

and 0.5 without changing the connement intensity. Another observation for β = 0.75 and 1.0 is that in LTR particles 

approaches exponent 1.0, behaving as only one body. This happens because when β is between 0.75 - 1.0 the final structure is 

a set of clusters that emerges because attractive interaction is much stronger than repulsive interaction, as shown in Figure 3. 

Temperature is high enough such that these clusters can break and get linked in another small cluster. 

 

Figure 3 - Equilibrium configuration for a system with 1:1 stoichiometry. Blue "+" circles are positive particles and red "-" 

circles are negative particles. 

 

Source: Image created by the author. 

 

In order to explain why strong attractive interaction leads to diffusion exponents higher than 0.5, Figure 3 should be 

analyzed. We see that the final configuration is a set of clusters which change particles one at a time, with empty spaces 

between clusters along the unconfined direction. When particles go from one cluster to another, this movement is induced by 

attractive interaction which grows as the particles approach one another, and stops when soft-core repulsion starts to act. This 

accelerated movement induced by attractive force is more relevant on hierarchy of forces than repulsive interaction so that 

implies a diffusion exponent with higher value than 0.5. It is also important to observe that when β = 0.75, temperature also 

breaks more easily when particles agglomerate than when β = 1.0, which explains that for β = 0.75 exponent diffusion is higher 

than for β = 1.0. 

To understand the increase of exponent diffusion, we calculate the mean-square displacement of each jth particle 

[Wj(t)] by equation 

 

where j = 1,...,N represents each individual particle and  is an average over different time origins during simulation. In 

Figure 4 we see that some particles have diffusion exponents equal to 0.7 (higher value) and other particles equal to 0.55 

(lower value). This means that some particles tend to stay more time moving themselves from one cluster to another (higher 

exponent value), while other particles tend to stay at the center of the cluster (lower exponent value), inducing the mean-value 

of diffusion exponent slightly larger than 0.5. 
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Figure 4 - Mean-square displacement of the system (white circle, W(t)) and mean-square displacement of individual particles 

(black circles, Wj(t) as a function of time t for β = 1.0 and stoichiometry 1:1.)  

 

Source: Image created by the author. 

 

A particle with positive charge has negative nearest neighbors and vice-versa, so attractive interaction becomes more 

relevant and the big cluster appears. Then when it is great enough to make attraction greater than repulsion, the way particles 

feel one another is different, which explains the different exponents for ITR. 

Another important point is that time transition between STR and ITR decreases as attractive interaction increases. 

This happens because neighbor particles are always of opposite charge, so greater attractivity implies more fast interactions 

and more fast diffusion regime transition. 

Plotting positive and negative charges separately shows that they diffuse in equal manner. This is expected because 

particles feel the same forces by its neighbours, in both structures (free particles or cluster structure), as shown in Figure 5. 
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Figure 5 - MSD for a) β = 0 and b) β = 1:0. Black solid line is the MSD curve for positive particles and the red circles are the 

MSD curve for negative particles. Curves are almost exactly the same.  

 

Source: Image created by the author. 

 

C. 2:1 Stoichiometry 

For stoichiometry 2:1, we have N/3 of positive particles and 2N/3 of negative particles. In this case positive particles 

size is , where a is the radius of negative particles. MSD calculations are shown in Fig. 6. 
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Figure 6 - MSD curves for different values of β. Dashed line illustrates normal diffusion regime and dotted lines illustrates 

single-file diffusion regime. 

 

Source: Image created by the author. 

 

For STR, ballistic regime is always attained. When ITR is analyzed, we can observe that SFD is always reached. Why 

do attractive interactions not lead to diffusion exponents between 0.5 and 1.0? In order to understand this point, final structures 

are sketched in Figure 7. 
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Figure 7 - Equilibrium configuration for system with 2:1 stoichiometry. Blue "+" circles are positive particles and red "-" 

circles are negative particles.  

 

Source: Image created by the author. 

 

When equilibrium is reached, positive particles attract negative particles to their surroundings, creating molecules 

with trimmerlike form. These negative particles create a screened trimmer. The consequence is that trimmers behave as single 

molecules with repulsive interactions more relevant than attractive one. This is the reason that trimmers diffuse always in SFD. 

Another fact is that when it increases its value, particle mobility also increases. This happens because when attractive force 

increases, the positive particle attracts negative particles in a more intense manner, which means that trimmer particles are 

closer to one another, then trimmers get a lower size. With a lower size, trimmers have more space to diffuse, increasing its 

mobility. Another consequence is that trimmers need more time to "feel" one another, which explains why time transition from 

STR to ITR raises together with values.  

For 2:1 stoichiometry, negative and positive particles diffuse with a tight difference, as shown on Figure 8. 
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Figure 8 - MSD for a) β = 0 and b) β = 1:0. Black solid line is MSD curve for positive particles, the red solid line is the MSD 

for Negative 1 particles and blue circles are MSD curve for Negative 2 particles.  

 

Source: Image created by the author. 

 

We see that in transition from STR to ITR, positive particles have a smaller diffusion coecient. Positive particles in 

2:1 stoichiometry exerts a stronger attraction on negative particles on both sides, creating trimmer molecules. This implies that 

negative particles go in the positive particles direction, which leads to lower diffusion coefficient by positive particles in STR-

ITR transition. 

 

D. 3:1 Stoichiometry 

For stoichiometry 3:1, we have N/4 positive particles and 3N/4 negative particles. In this case positive particles size is 

, where a is the radius of negative particles. MSD calculations are shown in Figure 9. 
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Figure 9 - a) MSD calculation for five different β values (from 0 to 1.0, with variation of 0.25). Dashed line illustrates normal 

diffusion regime and dotted lines illustrates single-file diffusion regime. b) Insertion picture showing MSD is not equal for 

different values of β.  

 

Source: Image created by the author. 

 

For STR, the diffusive regime is still ballistic, as expected. For ITR, first of all we can observe that SFD is again 

obtained. To understand this result, equilibrium configurations are shown in Figure 10. 
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Figure 10 - Equilibrium configuration for a system with 3:1 stoichiometry. Blue circles are positive particles and red circles 

are negative particles. 

 

Source: Image created by the author. 

 

When particles reach equilibrium configuration, it forms trimmer like molecules, and between them a single negative 

particle is free to move. The free negative particle cannot join the molecule structure because it has the same charge and then is 

repelled. This configuration inevitably leads to SFD because trimmers continue to act like single particles, and the interaction 

between trimmer-trimmer and trimmer-single particle is still only repulsive. Again we observe that when  increases, clusters 

get lower in size, earning space to move, as in 2:1 situation. Final configuration leads us to expect that single particles diffuse 

in a different manner than trimmer particles. MSD for different particles are shown in Figure 11. 
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Figure 11 - MSD for a) β = 0 and b) β = 1:0. Black solid line is MSD curve for positive particles, red circles are MSD curve 

for Negative 1 particles, blue solid line is MSD curve for Negative 2 particles and green solid line is MSD curve for Negative 3 

particles. 

 

Source: Image created by the author. 

 

We can observe two points: (i) particles Negative 2 diffuse more than the others. This can be explained by 

remembering that Negative 2 is the particles that are not attached to trimmer molecules, then these particles are not so in 

uenced by attractive forces as the others negative particles. (ii) Particles Negative 1 and Negative 3 have higher mobility than 

positive ones. This happens because sometimes the thermal force breaks the molecule temporarily, and then they diffuse more 

than positive ones that are attached to the other negative particle. Another important observation is that MSD for different 

charges is different for different  values, as shown in Fig. 10. We can observe that for β = 0, particles all diffuse in the same 

manner, because there is no attraction between particles, and consequently no molecule formation. When β = 0.50, positive 
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particles, Negative 1 and 3, and Negative 2 particles have different mobilities. When β = 1.0, the difference in mobility 

increases also. It is important to observe that for β = 1.0, we have an approximation of Negative 1, Negative 3 and positive 

particle diffusion MSD curves. This happens because for higher  values, trimmers are attached in a strong manner, so that they 

do not break so easily as for lower  values, having almost equal diffusion coefficients. 

 

4. Conclusion 

We studied a system of oppositely charged particles, interacting through a Yukawa potential, quasi-one dimensional 

parabolic confinement. For three different stoichiometries and different attraction intensities, the MSD analysis showed that for 

the case of stoichiometry 1:1, when the attraction between particles becomes sufficiently strong ( β > 0.75 - 1.0), the system 

starts to agglomerate, making possible the existence of diffusive regimes between SFD and normal diffusion, without changing 

confinement strength. This happens because attractive interactions between neighbors are stronger than repulsive interactions 

so that particles move faster as they approach their neighbors. It was also observed that for β = 0.75 temperature breaks particle 

aggregation so that they diffuse more than for β = 1.0. An interesting point is that with increasing attractive interaction, time 

transition between STR and ITR regimes decreases, because the agglomeration of particles gets faster and also collective 

motion. For 2:1 stoichiometry, SFD is always observed, no matter the value. Even with β = 1.0, attractive interaction induces 

particles to form trimmer-like structures which behave as a screened single particle. It was also observed that in the transition 

from STR to ITR positive particles have a lower mobility, expected because positive particles have bigger size. Because 

positive charge is bigger than negative charge, this implies that negative particles go to positive particle direction, which leads 

to lower diffusion coefficient by positive particles in STR-ITR transition. For 3:1 stoichiometry, SFD is always observed for 

different attraction intensities. In this case, trimmers have a negative particle between, but repulsive interaction is still stronger 

than attractive one. In 3:1 situation, negative particles between trimmers diffuse more than the others. It is possible to observe 

that negative trimmers particles have higher mobility than positive ones. Another important observation is that MSD for 

different charges is different for different values. 

The future perspectives of this work is to understand the effects of particles with different sizes and masses in 

diffusion exponent, where we expect to find subdiffusive regimes. 
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