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Abstract 

Endophytic fungi are microorganisms that live inside plants, establishing a mutualistic relationship, where both benefit 

from this interaction. They require protection and nutrients from host plants, and in return fungi can contribute to host's 

growth and nutrient uptake. In addition, they can improve plant tolerance to abiotic and biotic stresses and increase 

plant resistance to insects and pests. Endophytic fungi produce bioactive compounds similar to those of the host plant. 

The economic exploitation of these bioactive compounds is much promising. These bioactive products are related to 

sustainable production systems and to the development of new substances with strong pharmacological properties such 

as antiviral, antifungal, anti-inflammatory, antitumor and antiparasitic, antidiabetic and immunosuppressant, including 

response to resistant microorganisms. This study is a descriptive review, having as aim to approach the main benefits 

of endophytic fungi for host plants, as well as the biotechnological application of the bioactive compounds produced by 

them. The prospection of endophytic in extreme environment could result in discovery of new bioactive compounds 

with surprising potential for biotechnology area. So, the development of new research frontiers in this issue is 

indispensable for the sustainable exploitation of the great benefits that these microorganisms could provide to the 

science. 

Keywords: Endophytic; Mutualistic relationship; Antimicrobial resistance; Bioactive substances. 

 

Resumo 

Fungos endofíticos são micro-organismos que vivem dentro das plantas, estabelecendo uma relação mutualista, onde 

ambos se beneficiam desta interação. Eles requerem nutrientes e proteção das plantas hospedeiras, e em troca os fungos 

http://dx.doi.org/10.33448/rsd-v11i4.27008
http://dx.doi.org/10.33448/rsd-v11i4.27008
http://dx.doi.org/10.33448/rsd-v11i4.27008
https://orcid.org/0000-0002-9318-0332
https://orcid.org/0000-0002-2277-4125
https://orcid.org/0000-0002-7675-2554
mailto:michelinesantos@live.com
https://orcid.org/0000-0002-1012-1055
https://orcid.org/0000-0002-7675-2554
https://orcid.org/0000-0002-9525-2483
https://orcid.org/0000-0002-4255-6563
https://orcid.org/0000-0002-1816-7840
https://orcid.org/0000-0001-6557-3000


Research, Society and Development, v. 11, n. 4, e9211427008, 2022 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v11i4.27008 
 

 

2 

contribuem para o crescimento e captação de nutrientes dos seus hospedeiros. Além disso, eles podem melhorar a 

tolerância das plantas aos estresses abióticos e bióticos e aumentar a resistência das plantas aos insetos e pragas. Fungos 

endofíticos produzem compostos bioativos similares aos produzidos pelas plantas hospedeiras. A exploração econômica 

desses compostos bioativos é muito promissora. Esses produtos bioativos estão relacionados a sistemas de produção 

sustentáveis e ao desenvolvimento de novas substâncias com fortes propriedades farmacológicas como antiviral, 

antifúngico, anti-inflamatório, antitumoral, antiparasitário, antidiabético e imunossupressor, incluindo resposta a micro-

organismos resistentes. Este estudo é uma revisão descritiva, tendo como objetivo abordar os principais benefícios dos 

fungos endofíticos para as plantas hospedeiras, bem como a aplicação biotecnológica de seus compostos bioativos 

produzidos. A prospecção de endofíticos em ambientes extremos pode resultar na descoberta de novos compostos 

bioativos com potencial surpreendente para a área de biotecnologia. Assim, o desenvolvimento de novas fronteiras de 

pesquisa nesta temática é indispensável para a exploração sustentável dos grandes benefícios que esses micro-

organismos podem proporcionar à ciência. 

Palavras-chave: Endofíticos; Relação mutualista; Resistencia antimicrobiana; Substâncias bioativas. 

 

Resumen 

Hongos endófitos son microorganismos que viven en el interior de las plantas, estableciendo una relación mutualista, 

donde ambos se benefician de esta interacción. Requieren nutrientes y protección de las plantas anfitrionas y, a cambio, 

los hongos contribuyen al crecimiento y la absorción de nutrientes de sus anfitriones. Además, pueden mejorar la 

tolerancia de las plantas al estrés abiótico y biótico y aumentar la resistencia de las plantas a insectos y plagas. Los 

hongos endófitos producen compuestos bioactivos similares a los producidos por las plantas hospedantes. La 

explotación económica de estos compuestos bioactivos es muy prometedora. Estos productos bioactivos están 

relacionados con los sistemas de producción sostenible y el desarrollo de nuevas sustancias con una fuerte propiedades 

farmacológicas como antivirales, antifúngicos, antiinflamatorios, antitumorales, antiparasitarios, antidiabéticos e 

inmunosupresores, incluida la respuesta a microorganismos resistentes. Este estudio es una revisión descriptiva, con el 

objetivo de abordar los principales beneficios de los hongos endófitos para las plantas hospederas, bien como la 

aplicación biotecnológica de los compuestos bioactivos producidos por ellos. La prospección de endófitos en ambientes 

extremos puede resultar en el descubrimiento de nuevos compuestos bioactivos con un potencial sorprendente para el 

campo de la biotecnología. Por lo tanto, el desarrollo de nuevas fronteras de investigación en este tema es fundamental 

para la exploración sostenible de los grandes beneficios que estos microorganismos pueden proporcionar a la ciencia. 

Palabras clave: Endófito; Relación mutualista; Resistencia antimicrobiana; Sustancias bioactivas. 

 

1. Introduction 

Fungi found within plant species are called endophytic fungi and have enormous potential in the production of bioactive 

substances (Strobel, Daisy, Castillo & Harper, 2004). They seek protection and nutrients from host plants and in return, they 

contribute to greater nutrient uptake and growth of host plant, improve the tolerance to abiotic and biotic stresses (Gouda, Das, 

Sem, Shin & Patra, 2016) (Figure 1), possibly through secondary metabolites production (Kusari et al., 2012). The bioactive 

products of plants have effective antimicrobial activity against resistant pathogens (Farjana et al., 2014; De Zoysa et al., 2019). 

However, the endophytic fungi are able to produce bioactive substances with similar antimicrobial proprieties (Kumar et al., 

2017), in fact, according to Jalgaonwala et al. (2010), these microorganisms are seen as an excellent source of natural products. 
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Figure 1. Endophytes and their benefits for host plants. 

 

Source: Authors (2022). 

 

Similar bioactive compounds produced from endophytes, were related in many research papers:  quinones (Hu et al., 

2001); lignans (Puri et al., 2006); alkaloids (Yadav et al., 2014); lactones (Elfita et al., 2014; Liu et al., 2018); isocumarins (Wu 

et al., 2019), steroids (Parthasarathy et al., 2020); and phenols (Yadav et al., 2014; Khiralla et al., 2015, Bhabhardwaj et al., 

2015; Parthasarathy et al., 2020). These bioactive compounds showed several pharmacological activities, such as, antidiabetic 

(Zhang et al., 1999), antiviral (Guo et al., 2000), anti-inflammatory (Weber et al., 2004), antitumour (Li et al., 2005), 

immunosuppressive (Xu et al., 2020), and anticancer (Lim et al., 2021). These benefits indicate a wide applicability of bioactive 

compounds from endophytic fungi. This study is a review article with the aims to investigate endophytic fungi associated with 

host plants and their biotechnological potential.  

 

2. Methodology 

This study is a descriptive review (Prodanov & Freitas, 2013) focused on the main benefits of endophytic fungi for host 

plants and the biotechnological application of their bioactive compounds. This review aimed to answer the research questions: 

What are endophytic fungi? How do they interact with host plants? What are benefits of this interaction? What kind of bioactive 

compounds the endophytic fungi produce? How these bioactive compounds could be applied in biotechnology? The search 

strategy was carried out in electronic databases of the Science Direct, Periódicos Capes, Academic Google, and SciElo for 

scientific articles published in english and portuguese languages, no matter the publication year (eligibility criteria). The search 

was performed with the follow keywords: “endophytic fungi”, “plant”, “interaction”, “bioactive compounds”, “secondary 

metabolites”, and “biotechnological potential”. Dissertations, theses, conference abstracts, editorials, erratum, letters to the editor 
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and duplicate publications were excluded.  After studies selection, all papers were evaluated, being chosen those relevant for the 

studied theme. 

 

3. Endophytic fungi 

Terrestrial plants and fungal endophytes interacted since approximately 400 million years ago (Krings et al., 2007). 

Evidence of fungal endophytes were found in fossilized tissues of stem and leaf suggesting that these fungi were present before 

the first vascular plants arose, facilitating the colonization of land by plants (Redecker et al., 2000). However, endophytic 

microorganisms were first mentioned in the early 19th century and, it was only in 1866 that the mycologist De Bary established 

the differences between these microorganisms and plant pathogens (Azevedo, 1999).  

The word endophyte came from two greek words, "endon" meaning inside and "phyton" meaning plant (Dutta, Puzari, 

Gogoi & Dutta, 2014). According to Hirch and Broun (1992), endophytes are microorganisms colonizing plant tissue without 

causing any immediate, evident and/or negative effects on the plant.  They are generally fungi and bacteria and can be found in 

leaves, stems, roots and seeds (Peixoto Neto, Azevedo & Caetano, 2004), however, fungi are the most frequently isolated (Strobel 

& Daisy, 2003). The scientific community considers endophytic fungi as those that spend at least part of their life cycle inside 

plant tissues, without apparently causing any damage to their hosts (Petrini, 1991; Fouda et al., 2015). Endophytic fungi are 

different from phytopathogenic fungi, which are harmful to plants and also differ from epiphytic microorganisms which live on 

the surface of plant organs and tissues (Azevedo, 1998). The endophytic belong to a diverse polyphyletic group of 

microorganisms. They can thrive asymptomatically in plant tissues above and below ground, including stems, leaves and/or roots 

(Kusari et al., 2012). Research have been showed that each of the nearly 300,000 species of plants host one or even hundreds of 

endophytes strains (Figure 2). However, only a few these plants have ever been completely studied relative to their endophytic 

biology, thus, enormous opportunities exist for the recovery of novel fungal forms, taxa, and biotypes (Strobel & Daisy, 2003; 

Gakuubi et al., 2021).  
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Figure 2. Some examples of Endophytic fungi. 

 

 (A) Cladosporium delicatulum (Venkateswarulu, Shameer, Bramhachari & Basha, 2018); (B) Aspergillus sojae (Elango et al. 2020); (C) Phoma sp. (Chen, 
Yang, Zou, Chen & Pang, 2019); (D) Alternaria sp. (Tonial et al. 2016); (E) Botryosphaeria ramosa (Hu et al. 2020); (F) Alternaria (Gopane, Tchatchouang, 

Regnier, Ateba & Manganyi, 2021); (G) Fusarium (Gopane et al., 2021); (H) Penicillium (Gopane et al., 2021); (I) Thielaviopsis basicola (Bhardwaj et al., 

2015); (J) Penicillium frequentans (Bhardwaj et al., 2015); (K) Aspergillus (Manganyi, Regnier, Kumar, Bezuidenhout & Ateba, 2018); (L) Epicoccum 
(Manganyi et al., 2018); (M) Trichoderma (Manganyi, et al., 2018); (N) Fusarium solani (Chowdhury, Farjana & Sohrab , 2020); (O) Phomopsis sp. (Ye, Li, 

Yi, Zhang & Zou, 2019); (P) Microsphaeropsis arundinis (Ye e al., 2019). 

 

Endophyte fungi and their plant hosts establish a mutualistic interaction, because while the plants give protection and 

nutrition, the fungi help with the growth and competitiveness of the host plant by protecting it against biotic: attack by herbivores, 

pests and phytopathogens (Azevedo, 1998) and abiotic stresses: drought, salinity, extreme temperatures, and others (Khare, 

Mishra & Arora, 2018). For this reason, plants infected with endophytes are usually healthier than those free from endophytes 

(Waller et al., 2005). One of the main factors influencing the establishment and evolution of mutualistic interrelations between 

fungi and plants is the fact that endophytic fungi can produce plant metabolites. They can sometimes produce bioactive 

compounds analogous to their hosts (Kumar et al., 2017). In reality, it is possible that several “plant metabolites” are in fact the 

biosynthetic products of their endophytes (Kusari et al., 2012). According to Tan and Zou (2001), the genetic recombination 

between endophyte and host throughout the evolutionary time could be explain the similarity between phytochemical products 

from both.  
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4. Some Aspects Affecting Endophytic Fungi Diversity 

The population of endophytes in a plant species is highly variable and depends on several factors such as host genotype 

and environmental conditions (Tan et al., 2003). The distribution and population structure of endophytic fungi depend largely 

on host plant characteristics and its habitat. Arnold and Lutzoni (2007) compared endophyte communities along a broad 

latitudinal gradient from the Canadian arctic to the lowland tropical forest of central Panama. They observed that endophyte 

communities from higher latitudes, are characterized by relatively few species from many different classes of Ascomycota, 

whereas tropical endophyte assemblages are dominated by a small number of classes with a very large number of endophytic 

species, showing that the distribution of endophytic fungi varies with latitude. Hoffman and Arnold (2008) examined endophytes 

associated with healthy photosynthetic tissues of three closely related tree species in North Carolina (Juniperus virginiana; 

Platycladus orientalis) and Arizona (Cupressus arizonica e Platycladus orientalis). They found that endophytes diversity 

differed as a function of locality and host identity, as the diversity of endophytes from hosts in North Carolina was more than 

twofold greater than for hosts from Arizona, and the total diversity of endophytes colleted from Juniperus and Cupressus was 

1.4 times greater than that from Platycladus. This underscores the importance of host geography and taxonomy in the formation 

of the endophytic community. 

Collado et al. (1999) evaluated the importance of geographical and seasonal factors in fungal communities after the 

collection of plant material from eight trees per site, and differences were observed in the population of endophytic fungi 

according to the sample season and geographic distribution of host plants. Medians of fungal species per tree were significantly 

different among the sites and the degree of endophytic infection, and the diversity of fungal species were significantly higher in 

the spring. Souza et al. (2018) evaluated the population of endophytic fungi, associated with the leaves of plant Kalanchoe 

pinnata (in rainy and dry season) and observed greater richness and diversity of endophytic fungi in rainy season compared to 

dry season. Jiang et al. (2013) isolated endophytic fungi from different parts of Angelica sinensis in four different periods and 

found that the colonization of endophytic fungi depends on environmental conditions, because several communities varied 

seasonally, being more abundant in September and October at each site. 

Endophytic microorganisms may also prefer specific organs and tissues because of their adaptation to different 

physiological conditions in plants (Deng & Cao, 2016), e.g when Jiang et al. (2013) confirmed a greater diversity of endophytic 

fungi in root tissues rather than in stem and leaf tissues. González and Tello (2011) examined the composition of the endophytic 

fungal communities within the plant tissues of several cultivars of Vitis vinifera from the Madrid region and verified that fungal 

diversity was shown to be different according to the tissue analyzed. Results have shown that a greater percentage of fungal taxa 

were recovered from both woody tissues and leaves. Sieber (2007) showed that species composition of the endophyte community 

differs between tissue types and the age, something also demonstrated by Nascimento et al. (2015). They analyzed the community 

of endophytic fungi of Calotropis procera leaves, at different stages of maturation, and observed that the rate of endophyte 

colonization increased with the leaf age/development. 

The methodology used to isolate endophytic fungi affects the community composition and diversity of these 

microorganisms. Sun et al. (2011) isolated endophytic fungi from Acer truncatum using two methods. Results indicated that the 

composition and diversity obtained differed in both isolation methods, confirming that the entire endophyte community cannot 

be revealed by a single technique. Gamboa et al. (2002) compared the number of fungi isolated from 400 mm2 leaf pieces that 

were divided into increasingly small fragments and observed that cutting leaf pieces into smaller fragments significantly 

increased the number of fungal morphospecies recovered. 

The production of endophyte metabolites is also affected by several factors, such growth and fermentation conditions 

and habitat of the host.  Supratman et al. (2021) found that modification of the culture media enhanced the production of 

secondary metabolites by endophytic fungus Clonostachys rosea B5-2.  Ariantari et al (2019) isolated Bulgaria inquinans from 
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Viscum album, when the fungus was fermented in solid Czapek medium and later in the same media supplemented with a mixture 

of MgSO4, NaNO3 and NaCl salt. They identified compounds from the cultures grown in salt-supplemented Czapek media that 

were not detectable in cultures grown in normal Czapek media. Jadulco et al. (2002) isolated two strains of the fungus 

Cladosporium herbarum, from the marine sponge Aplysina aerophoba, in the Mediterranean sea and Callyspongia aerizusa, in 

Indonesia, respectively, and the same fungus produced different metabolites in their different hosts. 

 

5. Fungi and Their Host Specificities 

Endophytic fungi are mainly host-specific, causing little or no risk to non-target organisms or beneficial insects, such 

as pollinators (Carvalho et al., 2020). This specificity towards the host requires a close adaptation between the host plant and its 

fungal partner, suggesting a mutual influence resulting from co-evolution. In the long run, this association remains imprinted in 

the genetic makeup of both partners, who start to develop complementary genetic systems (Moricca & Ragazzi, 2008). Soares 

et al. (2017) reported that during co-evolution, endophytic fungi gradually adapted to specific microenvironments, including the 

uptake of some plant DNA segments into its genomes, as well as the insertion its DNA into the host genome.  

The specificity of fungi for their hosts has been demonstrated in some studies. Higgins, Arnold, Miadlikowska, Sarvate 

and Lutzoni (2007) surveyed endophytic fungi from healthy tissues of three plant species (Picea mariana, Dryas integrifólia e 

Huperzia selago) collected in two forests in the Canada: Québec e Nunavut. They found that endophyte communities were more 

similar among P. mariana from different localities than those associated with D. integrifolia and H. selago, in the same and 

different locations.  Among all genotypes obtained from Picea, 66.7% were found only in that host, 66.7% found in Huperzia 

were recovered only from that host species, and 60% from D. integrifolia were unique to that host. González and Tello (2011), 

investigated the diversity of fungal endophytes in many varieties of grapevines distributed along the Madrid regions. They 

observed that most taxa obtained could be considered as frequent species, suggesting that the majority of endophytic mycota of 

grapevine plants analyzed could be dominated by a group relatively constant species, rather than rare or occasional fungal taxa. 

Sun, Ding, Hyde and Guo (2012) investigated the endophytic fungi associated with Betula platyphylla, Quercus liaotungensis 

and Ulmus macrocarpa surveyed in Mount Dongling. Their results indicated that the host effect on the endophyte community 

was significant, showing 30.1% of variance in endophyte composition explained by host. The fungi Disculina vulgaris, 

Melanconis stilbostoma and Myxocyclus polycystis were strongly correlated with B. platyphylla. The fungi Fusicoccum sp., 

Microsphaeropsis arundinis and Phomopsis archeri were strongly correlated with Q. liaotungensis. They also reported that the 

fungi M. stilbostoma and M. polycystis have been found as endophytic fungi of Betula pubescens and Betula pendula in some 

European countries, suggesting that these two species significantly prefer Betula plants. 

 

6. Endophyte and Host Plant Interaction 

The interaction plants-endophytic fungi results in the production of metabolites by both (Kusari et al., 2014), and this 

interaction of plant metabolism and its endophytes can occur in five ways: (a) endophyte induces the metabolism of host, (b) 

host induces the metabolism of endophyte, (c) host and endophyte share parts of a specific metabolic pathway and contribute 

partially, (d) host can metabolize endophyte products and vice versa (e) endophyte can metabolize secondary compounds of host 

(Ludwig-Muller, 2015). Endophytes can not only produce bioactive substances, but also induce or promote their host plants to 

synthesize or accumulate more secondary metabolites (Jiang et al., 2013). These secondary metabolites obtained by endophytes, 

associated with the metabolites from the plant itself, can increase resistance of the plant and ensure that it can be more easily 

adapted to its habitat (Gomes & Luiz, 2018). 

The interactions between plant and endophytes are complex, involving multi-species communications and vary from 

host to host and from endophyte to endophyte (Gupta et al., 2018). This interaction is preceded by a physical encounter between 
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a plant and a fungus, followed by several physical and chemical barriers that must be overcome to establish the association 

(Kusari et al., 2012). The plant then produces different types of secondary metabolites, as mechanism of resistance to pathogens 

that are likely harmful for the endophytic fungi. As these metabolites become obstacles to the colonization of endophytic fungi, 

they protect themselves by secreting enzymes to break down these secondary metabolites before they penetrate the defense 

systems of host plants (Jia et al., 2016). The colonization of endophytic fungi on host plants can begin with production of these 

hydrolytic enzymes, that facilitate colonization (Dutta et al., 2014) or with the penetration of the microorganism in the plant 

through stomata or wounds (Azevedo, 1998). The colonization of endophytic fungi can occur inter or intra-cellularly and involves 

several stages, including recognition of the host, spore germination, penetration of the epidermis and tissue multiplication (Dutta 

et al., 2014). Once inside the tissues of a host plant, endophytic fungi assume a quiescent state, either for the life of the host plant 

or until the environmental conditions are favorable (Sieber, 2007). 

Most endophytes infect plants by airborne spores, in a type of transmission is termed horizontal transmission. On the 

other hand, some endophytes can also be transmitted vertically to the next generations of plants through seeds (Hartley & Gange, 

2009). The transmission mode may moderate the endophytic-plant interactions, as studies have shown that vertically transmitted 

(systemic), growing inside the seeds are more likely to be mutualistic, while transmitted horizontally via spores (non-systemic), 

to be more antagonistic to the host (Saikkonen et al., 1998). So, the interaction fungi-plant must be considered as a flexible, 

whose directionality is determined by small differences in the fungal expression gene like an answer to host, or inversely by the 

recognition of host and response to fungus. Thus, small genetic differences in the genomes of both partners control the 

relationship result, positive, negative or neutral (Moricca & Ragazzi, 2008).  

Different from pathogen-host interaction, that causes disease to the host, the endophyte-host interaction maintains a 

balanced antagonism without development of disease. The endophytes play a mutualistic role within its host, by increasing the 

concentration of defense metabolites potentially activated against pathogens, by excreting phytohormones and/or by increasing 

the general metabolic activity of plant host (Schulz et al., 1999). 

The idea of a balanced antagonism means that the endophyte acts preventing the activation of the host defenses, before 

being disabled by the host's toxic metabolites. In this way, the endophytic can grow inside the host without causing visible 

manifestations of infection or disease, and the balance of antagonism between plant and host is established and this association 

remains apparently asymptomatic and no virulent. If the plant defense mechanisms counteract fungal virulence factors, the 

fungus will die, but on the other hand, if the plant succumbs to the fungus virulence, a plant pathogen relationship is established 

and would lead to plant disease. Many endophytes can be latent pathogens, in other words, they can be influenced by certain 

intrinsic or environmental conditions to express the factors that lead to pathogenicity (Pamphile et al., 2017).  

Schulz et al. (2015) suggested that to grow asymptomatically within their plant hosts, fungal endophytes would need to 

not only maintain a balanced antagonism with their plant host, but also with other bacterial and fungal communities in the host. 

This would explain the synthesis of antibacterial and antifungal metabolites by fungal endophytes.  

The factors responsible for fungal transition from endophyte to pathogen are not fully understood. For better 

understanding the dynamics of endophytes, comparative studies must be undertaken to work out conditions and gene expressions, 

in both plants and endophytes, under which the same microbe behaves as mutualist or pathogen (Khare et al., 2018). However, 

the existence of endophytic microorganisms in the plant host is in most cases advantageous since the secondary metabolites 

produced by endophytes provide many benefits for plants (Tanvir et al., 2017). These benefits include resistance to abiotic and 

biotic stress, nutrient uptake, among others. 
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7. Plant Resistance to Abiotic Factors Provided by Endophytic Fungi 

Endophytic fungi produce different bioactive compounds, such as alkaloids (Yadav et al., 2014; Bhardwaj et al., 2015; 

Xu et al., 2020), diterpenes (Bhardwaj et al., 2015; Parthasarathy et al., 2020), and flavonoids (Yadav et al., 2014; Bhardwaj et 

al., 2015; Mollaei et al., 2019) that increase the resistance to abiotic stress in their host plants (Jia et al., 2016).  They can also 

modulate the abscisic acid (ABA) biosynthesis and ABA mediated signaling, phytohormone that regulates stomatal closure in 

plants, and thus, contribute to the plant growth enhancement under salt stress conditions (Khare et al., 2018). 

Bayat et al. (2009) demonstrated that endophytic fungi Neotyphodium coenophialum in Festuca arundinacea Schreb 

considerably contributes to host's water stress tolerance, compared to grasses without the endophytic fungi. These results can 

help finding more compatible endophyte–grass combinations to breed grass cultivars more tolerant to drought stress. Ghaffari et 

al. (2019) analyzed the contribution made by Piriformospora indica colonization in barley root to the host plant’s ability to 

tolerate drought stress. The fungal endophyte increased host biomass and its ability to overcome abiotic stresses. The evidence 

is that the presence of the endophyte redirects protein synthesis towards nitrogenous compounds, especially under more severe 

stress conditions. According to them, this may function in both biotic and abiotic stress resistance mechanisms which can enhance 

plant adaptation in field conditions in face face both biotic and abiotic stresses. Kham, Hussain, Al-Harrasi, Al-Rawahi and Lee 

(2013) and Kham et al. (2011a, 2011b) demonstrated that plants inoculated with endophytic fungi are more resistant to abiotic 

stresses, when compared to uninoculated plants (control). Thus, the association of endophytes with the target cultures, would 

make possible to grow plants in certain places where plants without association with the endophytic agent could have difficulties 

to developing (Fontana et al., 2021). 

 

8. Plant Resistance to Biotic Factors Provided by Endophytic Fungi 

After colonizing the plant and establishing itself, endophytes can induce the plant resistance to pathogens and insects 

(Deng & Cao, 2016), as the endophytic colonization occupies an ecological niche and leaves no room for pathogens, showing 

how fungal endophytes inhibit plant infection by pathogens (Dutta et al., 2014). Endophytic fungi can also inhibit plant pathogens 

through other mechanisms: competing for space and nutrients, parasitizing, producing secondary metabolites (such as enzymes 

and antibiotics) and inducing resistance in the plant by activation of its own defense system (Zabalgogeazcoa, 2008). The result 

of these interactions, such as antibiosis, competition, defense induction and parasitism, leads to biological control of plant 

diseases (Howell, 2003).  

Several natural products from endophytic fungi have antimicrobial activity and are involved in protecting the host plant 

against phytopathogenic microorganisms (Gunatilaka, 2006). A screening of fungal isolates for biologically active secondary 

metabolites (antibacterial, antifungal or herbicide) showed that the proportion of endophytic isolates that produce active 

herbicidal substances is three times higher when compared to the proportion produced by fungi isolated in the soil, and twice as 

high as that the proportion produced by phytopathogenic fungi (Schulz et al., 1999).  

The production of alkaloids by endophytes results in the reduction of herbivory by insects and mammals (Bush et al., 

1997). Toxicoses induced in domestic herbivores by ingesting certain plants are related to endophytic microorganisms, mainly 

fungi. Cattle that feed on forage grasses containing endophytes may develop symptoms such as weight reduction, increased body 

temperature and gangrene, and even die (Azevedo, 1998). For example, the endophytic fungus Epichloë typhina causes "fescue 

toxicity", a syndrome suffered by cattle fed on Festuca arundinacea grass pastures (Bacon, Porter, Robbins & Luttrell, 1977). It 

was found that these infected plants contained several toxic alkaloids and that Epichloë (asexual forms = Neotyphodium spp.) 

could be beneficial to host plants, increasing their tolerance to stresses caused by biotic and abiotic factors (Schardl et al., 2004). 

Metabolites produced by endophytic fungi Phomopsis oblonga have a repellent effect against the beetle Physocnemum 

brevilineum, disease vector in plants of the genus Fagus (Webber, 1981). Wilkinson et al. (2000) affirmed that alkaloids produced 
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by endophytic fungi are toxic or unpleasant for insects, protecting host plants from their attacks. Another example is the fungi 

Colletotrichum tropicale, that influences leaf chemistry and makes leaves less appealing to leaf-cutting ants and changed the 

host metabolism in a way that leaf-cutting ants prefer non-colonized plants (Estrada et al., 2013).  

 Fungi can be pathogens for insects, attacking the plant pathogen insects by different mechanisms, such as parasitism, 

competition for habitat and nutrients, and production of secondary bioactive metabolites (Jaber & Ownley, 2017). In a study, 

Ownley et al. (2008) demonstrated that application of conidia of the entomopathogenic fungus Beauveria bassiana on seed 

cotton and tomato results in endophytic colonization and protection against plant pathogenic Rhizoctonia solani and Pythium 

myriotylum. With these evidences, endophytes have been recognized for their ability to protect their hosts from pathogens and 

can be used as biocontrol agents (Fontana et al., 2021).  

 

9. Nutrient uptake and growth promotion mediated by endophytic fungi 

Endophytic microorganisms facilitate nutrient uptake for plant growth through modification of root morphology, 

alteration of nitrogen accumulation and metabolism (Figure 3). They also help to use water efficiently through osmotic 

adjustment and stomatal regulation (Lata et al., 2018) and can also increase the host fitness and competitive skills, increasing the 

rate of germination and growth or improving the absorption of nutritional elements by the host (Aly et al., 2011). Yang et al., 

(2021) evaluated the role of endophytic fungus Piriformospora indica in plant growth and nutrient acquisition especially 

phosphorus (P), into trifoliate orange (Poncirus trifoliata). Compared with the non-inoculated treatment, P.indica inoculation 

significantly increased root N (Nitrogenous), P (Phosphorus), K (Potassium). Inoculation of this fungus also improved stem 

diameter, plant height, leaf number, stem, and root biomass. 

The ability to stimulate plant growth can also be attributed to the production of phytohormones (Luz, Silva, Silveira & 

Cavalcante, 2006). Endophytic fungi are directly related to the production of phytohormones in plants, mainly in the production 

of auxins and gibberellins that provide vital functions for plants.  Some endophytic fungi can increase the fitness and growth of 

host plants, increasing hormones such as indole-3-acetic acid, indole-3-acetonitrile and cytokinins (Jia et al., 2016). White Junior 

et al. (2002) related those fungi producing growth hormone for plants modify the plant physiology and structure, to better extract 

nutrients for themselves. This ability to stimulate plant growth is extremely important and can be explored in modern agricultural 

practices, increasing the production and contributing to sustainability (Luz et al., 2006). 
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Figure 3. Nutrient uptake mediated by endophytic fungi. 

 

Source: Authors (2022). 

 

10. Prospecting and Biotechnological Potential of Endophytic Fungi 

Some features from plant communities have been chosen to optimize the selection of advantageous endophytes, like 

plants from peculiar environments, plants with unusual biology and survival strategies; plants with an ethnobotanical history, 

that is, those traditionally used as a medicine; endemic plants, with unusual longevities or located in ancestral environments; 

plants from environments with high diversity (Strobel & Daisy 2003), growing in hot spots and that are in threatened categories. 

Habitats that have not yet been explored may also contain new isolates of fungal endophytes of pharmaceutical interest (Gupta 

et al., 2018).  

Endophytic fungi are frequently isolated from medicinal plants to obtain bioactive compounds for therapeutic activities 

(Rana et al., 2020). For Gomes and Luiz (2018), the use of medicinal plants for the isolation of endophytes is one of the most 

viable options, as many compounds are already obtained from plants.  

Ecosystems with higher biodiversity are also those with higher quantity of endophytes, implying higher chemical 

diversity (Ferrara, 2006), which is totally associated with biological diversity due to the constant chemical innovation existing 

in ecosystems (Strobel & Daisy, 2003). Tropical, semi-arid and humid forests are rich in endophytes due to their enormous 

diversity of plants (Oita et al., 2021). That is why many mycologists agree that in tropical forests the fungal diversity is maxima 

(Arnold et al., 2000). According to Redell and Gordon (2000), it's likely that tropical forests are a source of new molecular 

structures and biologically active compounds. Jia et al. (2016) showed that some species of endophytic fungi were found only in 

extreme conditions, as observed in Cactus sp. from savanna deserts and with Saussurea involucrata, Sinopodophyllum 

hexandrum and Pedicularis sp., in high altitude. Thus, there is an excellent possibility to explore new biomolecules among 

countless plants in various niches and ecosystems (Gupta et al., 2018).  

Many endophytes are able to produce the same substances as the host plant, given that plants and microorganisms have 

a similar primary metabolism (Gomes & Luiz, 2018). This makes possible obtaining bioactive products directly from 

microorganisms without the host plant (Milke et al., 2018). The production of biologically active substances by endophytic fungi 

http://dx.doi.org/10.33448/rsd-v11i4.27008
http://dx.doi.org/10.33448/rsd-v11i4.27008
http://dx.doi.org/10.33448/rsd-v11i4.27008


Research, Society and Development, v. 11, n. 4, e9211427008, 2022 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v11i4.27008 
 

 

12 

is related to their ability to survive and colonize a distinct microenvironment, subject to constant metabolic and environmental 

interactions, which are often hostile (Ferrara, 2006). So, if endophytes can produce the same bioactive compounds such as their 

host plants, it's possible to reduce the harvest of slow-growing plants or rare plants, preserving biodiversity (Strobel & Daisy 

2003). Thereby, these compounds would be obtained from fermentative processes, in contrast to traditional extractive processes, 

with advantages related to regularity and uniformity of production and environmental gains (Ferrara, 2006).  

Endophytic fungi are advantageous because they have short generation time, high biomass production due to high 

growth rates and good handling features in bioreactors (Ludwig-Müller, 2015). According to Gomes and Luiz (2018), this 

method of obtaining such products is quite advantageous, since many of them are already known and can be obtained from 

isolated endophytic fungi. Two important aspects must be considered: the biotechnological potential of endophytic fungi, and 

the possibility of obtaining new substances that have never been isolated from plant tissues.  

In addition, it is recognized that a microbial source of an evaluated product can be easier and more economical in terms 

of its production, effectively reducing its market price (Strobel & Daisy 2003). This could lead to a cost-effective, sustainable, 

continuous, and reproducible yield, compliant to commercial scale-up. This production process would then be independent of 

the variable quantities produced by plants, that are influenced by environmental conditions (Kusari et al., 2012). For example, 

the Taxol was the first anticancer drug that reached a world market of a billion dollar (Strobel, 2002), which is found in small 

quantities (0.001% to 0.01% of the dry bark weight) in Taxus sp., slow growing trees found in the Pacific regions (Kathiravan et 

al., 2013). From this plant species, the endophytic fungus Taxomyces andreanae was isolated, capable of producing Taxol were 

isolated, opening the possibility of obtaining it through fermentation, with lower costs and greater quantity (Stierle, Strobel & 

Stierle, 1993). This result shows that substances with known therapeutic activities can be obtained from endophytic fungi in a 

sustainable way, highlighting the need for further research on these microorganisms (Gomes & Luis, 2018).  

The ability of endophytic fungi to produce biocompounds represent an important resource for biotechnological 

advancement and sustainable economic development (Oliveira et al., 2006). They are efficient producers of several bioactive 

compounds (Gunatilaka, 2006; Kumar et al., 2017). These bioactive compounds have biotechnological proprieties, such as, 

antimicrobial, antidiabetic, antiviral, anti-inflammatory, anticancer, antifungal, antiparasitic, and immunosuppressive (Table 1). 

Endophytic fungi isolation and selection have applications in several segments such as health, agriculture, industry and the 

environment protection (Oliveira et al., 2006).  
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Table 1. Some examples of endophytic fungi and their host plant, local, pharmacologic property, produced bioactive compounds and authors. 

Fungus Species Host plant Local Property Bioactive compounds Authors 

Alternaria alternata, Drechslera 

dematiodea, Phomopsis archeri, 

Mycelia Sterilia 

Lippia sidoides Pernambuco, Brazil Antimicrobial activity Not identified 
Siqueira, Conti, Araújo 

& Souza-Motta 2011 

Chaetomium sp., Aspergillus sp., 

Aspergillus peyronelii, Aspergillus 

niger 

Eugenia jambolana Haryana, India Antioxidant activity 

Alkaloids, phenols, 

flavonoids, saponins and 

terpenes 

Yadav et al., 2014 

Alternaria alternate, Aspergillus 

flavus, A. terréus, A. niger, 

Cladosporium sp., Fusarium sp., 

Penicillium sp., Sterile mycelium, 

Meyerozyma sp. 

Suaeda marítima and 

Suaeda monoica 
Vellar Estuary, India 

Antimicrobial and 

antifungal 

activity 

 

Not identified 

Kalyanasundaram, 

Nagamuthu, & 

Muthukumaraswamy, 

2015 

Aspergillus sp. 
Trigonella foenum-

graecum 
Khartoum, Sudan Antioxidant activity Phenolic compounds Khiralla et al., 2015 

Aspergillus niger, Corynespora 

cassicola, Glomerella acutata 
Hibiscus subdarifa L. Assam, India Antimicrobial activity Not identified Nath and Joshi, 2015 

Alternaria alternate, Thielaviopsis 

Basicola, Geotrichium Álbida, 

Penicillium Frequentans 

Pinus roxburghii Uttarakhan, India Antimicrobial activity 

Alkaloids, flavonoids 

phenols, tannins, 

terpeniods and saponins 

Bhardwaj et al., 2015 

Penicillium chrysogenum, Sterile 

hyphae, Alternaria alternata 
Asclepias sinaica South Sinai, Egypt 

Antimicrobial activity 

 
Not identified Fouda et al, 2015 

Curvularia pallescens Calotropis procera Pernambuco, Brazil 
Antimicrobial activity 

 
Not identified Nascimento et al., 2015 

Trichoderma longibrachiatum Cereus jamacaru Pernambuco, Brazil 
Antimicrobial activity 

 
Not identified Pires et al., 2015 

Colletotrichum sp., Aspergillus sp., 

Pestalotiopsis sp., Scedosporium sp., 

Phomopsis sp., Paecilomyces sp., 

Xylaria sp., Exserohilum rostratum 

Bauhinia guianensis Amazônia, Brazil 
Antimicrobial activity 

 
Monocerin Pinheiro et al., 2017 

Aspergillus sp., A. niger, Penicillium 

expansum 
Pelargonium sidoides 

Pretoria, Hercules; Cape 

Town, Klein Karoo; Port 

Elizabeth, Uitenhage; 

Bloemfontein, Danhof; 

South Africa 

Antimicrobial activity 

 
Not identified Manganyi et al., 2018 

Fusarium tricinctum 
Lithospermum officinale 

L. 
Tabriz, Iran 

Antioxidant activity 

 
Shikonin Mollaei et al., 2019 
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Alternaria sp, Chaetosphaeronema 

achilleae, Fusarium tricinctum, Mucor 

hiemalis, Trichoderma harzianum 

Lithospermum officinale 

L. 
Tabriz, Iran 

Antimicrobial and 

antioxidant activity 
Polyphenols and flavonoids  Mollaei et al., 2019 

Aspergillus cejpii Nelumbo nucifera Pathumthani, Thailand 
Antimicrobial activity 

 

5- (1H-Indol-3-il) -4,5-di-

hidro- [1,2,4] triazin-3-

ilamina (C11H11N5) 

Techaoei, 

Jirayuthcharoenku, 

Jarmkom, 

Dumrongphuttidecha & 

Khobjai, 2020 

Diaporthe phaseolorum, 

Penicillium sp., Periconia igniari, 

Colletotrichum sp 

Stephania dielsiana Laibin, Guangxi, China Antimicrobial activity Not identified Wu et al., 2020 

Penicillium chrysogenum Chaetomorpha antennina 
Kovalam, Chennai, South 

India 

Antimicrobial and 

anticancer activity  

 

Terpenoids, steroids, 

phenolics, flavones, 

anthraquinone and 

cinnamic acid 

Parthasarathy et al., 

2020 

Aspergillus fumigatus Rhizophora mucronata 
Dong Zhai Gang- Hainan 

Island, China 
Immunosuppressive activity Alkaloids and polyketides Xu et al., 2020 

Penicillium decumbens Sonneratia sp. Morib, Malaysia Anticancer activity Polyphenolic Lim et al., 2021 

Trichoderma longibrachiatum 
Juniperus 

lutchuensis Koidz 

Alpine Sanctuary, Sikkim, 

Himalayas 
Antifungal activity  

Hydrocarbons, alcohols, 

ketones, aldehydes, esters, 

acids, ethers and different 

classes of terpenes 

Rajani, Rajasekaran, 

Vasanthakumari, 

Olsson & Ravikanth, 

2021 

Source: Authors. 
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These applications have been demonstrated previously, e.g., when Farhat et al. (2019) isolated Cephalosporium 

acremonium and Fusarium solani from healthy plants, and these fungi have showed strong activity against common laboratory 

bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhimurium, Bacillus subtilis and Escherichia coli). 

They identified twenty-one different volatile compounds of Cephalosporium, of which eleven are new compounds from this 

source. Elango et al. (2020) isolated and investigated endophytic fungi and its metabolites as a biocontrol agent pesticide-resistant 

insect pest, isolating the fungus Aspergillus sojae from the plant Plectranthus amboinicus. The produced metabolites 

demonstrated potent activities against cotton leaf worm Spodoptera litura. Cruzzi, Link, Vilani and Onofre (2011) evaluated the 

capacity of species of endophytic fungi isolated from Baccharis dracunculifolia to produce extracellular enzymes. Endophytic 

fungi showed lipolytic, amylolytic and proteolytic activity. The fungi Cylindrocladium sp. and Penicillium sp., showed higher 

production of lipases and enzyme production proteolytic, respectively. Pietro-Souza et al. (2020) evaluated the capacity for 

mercury bioremediation in vitro mediated by endophytic fungi. The fungi Aspergillus sp., Curvularia geniculata, 

Lindgomycetaceae and Westerdykella sp. removed up to 100% of mercury from the culture medium. Based on this studies, 

endophyte-assisted phytoremediation is a promising technology for the remediation of contaminated soils.   

Endophytic fungi represent an inexhaustible source of important metabolites with a wide biological activity, and the 

discovery that these endophytic fungal can produce plant-associated molecules raises the prospects of exploiting such fungi as 

an alternative source of valuable compounds. According to Gakuubi et al. (2021), this may offer the possibilities for production 

of other useful bioactive compounds that are produced in unsustainable quantities in plants.  

 

11. Final Considerations 

The endophytic fungi are able to produce bioactive substances similar to their hosts and could be widely explored for 

the sustainable development of bioactive substances more effective and more ecological friendly. Also, they have a 

biotechnological potential to produce large amounts of biomass, due to their high productivity in fermentation processes. 

Therefore, endophytic fungi could be used in different fields like industry, health, agriculture and the environment. 

The prospection of endophytic in extreme environment could result in discovery of new bioactive compounds with 

surprising biotechnology potential. So, the development of new research frontiers in this issue is indispensable for the sustainable 

exploitation of the great benefits that these microorganisms could provide. 
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