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Abstract  

Chronic kidney disease affects a vast part of the world population and as a consequence gradually declines renal 

function. Patients enter the end stage of kidney disease as the disease progresses, and the use of renal replacement 

therapy such as hemodialysis then becomes necessary. With the advance of technology, new modalities of dialyzers 

have been made available in the market with the objective of making the hemodialysis process more efficient and of 

increasing its biocompatibility. This review aims to discuss different hemodialysis techniques, focusing on online 

hemodiafiltration and high-flux hemodialysis, in terms of molecular clearance, biocompatibility, cardiovascular 

stability, survival, safety, and costs. In comparison to conventional hemodialysis (low-flux), online hemodiafiltration 

and high-flux hemodialysis present a greater capacity to filtrate medium molecular weight molecules, presenting 

greater biocompatibility and maintaining cardiovascular stability during dialysis sessions, and constituting factors 

which can justify better outcomes of patients submitted to these modalities. However, studies differ on the real 

superiority of online hemodiafiltration when compared to high-flux hemodialysis, which highlights the need for 

further discussion on the subject.  

Keywords: Biocompatible materials; Cardiovascular diseases; Renal dialysis; Hemodiafiltration. 

 

Resumo 

A doença renal crônica afeta uma vasta parte da população mundial e, como consequência, diminui gradualmente a 

função renal. Os doentes entram na fase final da doença renal a medida que a doença progride, e o uso de terapia de 

substituição renal, como a hemodiálise, torna-se necessário. Com o avanço da tecnologia, novas modalidades de 

dialisadores foram disponibilizadas no mercado com o objetivo de tornar o processo de hemodiálise mais eficiente e 

de aumentar a sua biocompatibilidade. Esta revisão visa discutir diferentes técnicas de hemodiálise, centrando-se na 

hemodiafiltração em linha e hemodiálise de alto fluxo, em termos de depuração molecular, biocompatibilidade, 

estabilidade cardiovascular, sobrevivência, segurança e custos. Em comparação com a hemodiálise convencional 

(baixo fluxo), a hemodiafiltração em linha e a hemodiálise de alto fluxo apresentam uma maior capacidade de filtrar 

moléculas de peso molecular médio, apresentando maior biocompatibilidade e mantendo a estabilidade cardiovascular 

durante as sessões de diálise, constituindo fatores que podem justificar melhores resultados nos pacientes submetidos 

a estas modalidades. Contudo, os estudos diferem sobre a real superioridade da hemodiafiltração em linha quando 

comparados com a hemodiálise de alto fluxo, o que evidência a necessidade de uma discussão mais aprofundada sobre 

o assunto. 

Palavras-chave: Materiais biocompatíveis; Doenças cardiovasculares; Diálise renal; Hemodiafiltração. 

 

Resumen 

La enfermedad renal crónica afecta a una gran parte de la población mundial y, como consecuencia, disminuye 

gradualmente la función renal. Los pacientes entran en la fase final de la enfermedad renal a medida que ésta 

progresa, y entonces se hace necesario el uso de la terapia de sustitución renal, como la hemodiálisis. Con el avance 
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de la tecnología, se han puesto a disposición del mercado nuevas modalidades de dializadores con el objetivo de hacer 

más eficiente el proceso de hemodiálisis y de aumentar su biocompatibilidad. Esta revisión pretende discutir las 

diferentes técnicas de hemodiálisis, centrándose en la hemodiafiltración en línea y la hemodiálisis de alto flujo, en 

términos de aclaramiento molecular, biocompatibilidad, estabilidad cardiovascular, supervivencia, seguridad y costes. 

En comparación con la hemodiálisis convencional (de bajo flujo), la hemodiafiltración en línea y la hemodiálisis de 

alto flujo presentan una mayor capacidad de filtrar moléculas de peso molecular medio, presentando una mayor 

biocompatibilidad y manteniendo la estabilidad cardiovascular durante las sesiones de diálisis, y constituyendo 

factores que pueden justificar mejores resultados de los pacientes sometidos a estas modalidades. Sin embargo, los 

estudios difieren en cuanto a la real superioridad de la hemodiafiltración en línea en comparación con la hemodiálisis 

de alto flujo, lo que pone de manifiesto la necesidad de seguir discutiendo el tema.  

Palabras clave: Materiales biocompatibles; Enfermedades cardiovasculares; Diálisis renal; Hemodiafiltración. 

 

1. Introduction  

The main function of the kidney is to eliminate toxins generated by the metabolic processes of the body (Clark et al., 

2019). Patients with chronic kidney disease (CKD) or who are in end-stage renal disease (ESRD) have this function affected, 

which leads to accumulation of the aforementioned toxins in the circulatory system, a condition called “uremia” (Clark & Gao, 

2002; Franco et al., 2019). An accumulation of these so-called uremic toxins (UTs) in the body generates several deleterious 

effects in the organism, including malnutrition, anemia, dermal atrophies, dyslipidemia, metabolic acidosis, inflammation, 

pericarditis, hypertension, heart failure, coagulation disorders, and cardiovascular disease (CVD). CVDs are the leading cause 

of death in these patients (Go et al., 2004; Vanholder et al., 2005, Vanholder et al., 2008).  

Patients in ESRD require renal replacement therapy (RRT) such as dialysis in order to prevent symptoms and to 

sustain their life (Pecoits-Filho et al., 2019). Despite technological and management advances to improve the quality of life 

(QoL) of patients in ESRD, it is notable that there is a high incidence of adverse complications such as hospitalization and 

death in this population, where the mortality rates of patients in ESRD are higher than patients with diabetes, CVD or cancer 

(Pecoits-Filho et al., 2019; Saran et al., 2017). However, new hemodialysis techniques are being developed, improved and 

studied in order to improve this scenario. Conventional low-flux hemodialysis (HD) is not highly effective, and patient 

morbidity and mortality rates are still high (Locatelli et al., 2015). As an alternative, recent controlled trials demonstrate that 

dialysis techniques which make use of high-flux membranes or that associate diffusion with convection show superiority over 

conventional hemodialysis in clinical endpoints (Canaud et al., 2020).  

Thus, this review aims to discuss the main characteristics and conclusions of the impact of high-flux hemodialysis (hf-

HD) and online hemodiafiltration (HDF) techniques on molecular clearance, biocompatibility, cardiovascular stability, 

survival, safety and cost.  

 

2. Methodology  

The present study is a systematic exploratory review (Reyes, 2020) of scientific research and literature reviews 

conducted between 1999 and 2020, with the aim of discussing different hemodialysis techniques, focusing on online 

hemodiafiltration and high flux hemodialysis, in terms of molecular clearance, biocompatibility, cardiovascular stability, 

survival, safety and costs. MEDLINE/PubMed (U.S.A. National Library of Medicine), Web of Science: Science Citation Index 

(Clarivate Analysis), SciELO and Google Scholar databases were used to search for articles using the following descriptors: 

Hemodialysis, Hemodiafiltration, High Flux Hemodialysis, Uremic Toxins, Cardiovascular Stability, Filtration Membranes 

and Biocompatibility. Articles published before the year 1999 and those without the descriptors in the title and/or abstract were 

excluded, the remaining clinical and review studies were included in the review process (Figure 1). 
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Figure 1. Flow chart outlining the protocol adopted in this systematic review. 

 

Source: Authors. 

 

3. Hemodialysis Modalities 

A suitable method for replacing renal function is HD, which is the most prevalent RRT technique worldwide. New 

HD modalities have emerged with the advancement in technology, aiming to improve the performance of this technique, as 

well as to increase the quality of life of patients and reduce the risks associated with the chronic use of RRT (Larkin et al., 

2019). Although any RRT type is available in most countries, it is limited to specific subgroups of the population and 

frequently the most vulnerable populations have no access to treatments nor to diagnostics. 

 

3.1 High-flux hemodialysis (hf-HD) 

HD is used to artificially remove circulating toxins by an external filter which contains a semipermeable membrane 

(Donadio et al., 2017; Vadakedath & Kandi, 2017) with a thickness of about 20 to 45 μm, length of 160 to 250 mm (Sakai, 

2000), and pore size ranging from 1 to 14 nm. This dialysis modality (low-flux) mainly targets the filtration of low molecular 

weight UT (<500 Daltons), which limits its efficiency (Locatelli et al., 2010; Suchy-Dicey et al., 2016) since it makes use of 

diffusion (Ledebo, 1999; Ledebo & Blankestijn, 2010). The diffusive transport process requires the dialysis fluid, which flows 

through the counter-current from the dialyzer to blood (Figure 2) (Ledebo, 1999; Ledebo & Blankestijn, 2010; Thomas & 

Jaber, 2009). The difference in solute concentration between the blood and the dialysate serves as a driving force for diffusive 

transport, and this force differs for each solute, the diffusion rate is defined by the molecular weight of the solute and its 

resistance to flow, this resistance is due to the hemodialysis membrane and its physical characteristics. The diffusion rate is 

inversely proportional to the cubic root of the molecular weight, which favors the clearance of low molecular weight molecules 

(Ingrid Ledebo & Blankestijn, 2010; Ledebo, 1999). 

Alternatively, hf-HD aims to improve the clearance capacity using membranes with larger pores, high ultrafiltration 

and convective therapy, thus also removing medium molecular weight molecules (>500 Daltons and <12.000 Daltons). The 

convection process resembles the physiological process in the human kidney, whereby plasma is filtered through the 

glomerulus, which is selectively permeable, and glomerular filtration depends on a relatively low hydrostatic pressure, 

convection and solvent drag (Thomas & Jaber, 2009). The blood is filtered through a highly permeable biosynthetic 

membrane, promoting the removal of low and medium molecular weight molecules, which has a higher filtration capacity of 
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low molecular weight UT (Meyer et al., 2005; Pecoits-Filho et al., 2019; Thomas & Jaber, 2009). In this modality, the total 

ultrafiltration can exceed the delimited weight loss and the compensation of this loss occurs within the dialyzer by 

retrofiltration. Convective transport is considerable due to the permeability of the high flux membranes, but cannot be 

controlled, which is the main difference when compared to online hemodiafiltration (HDF) (Ledebo & Blankestijn, 2010; 

Petrie et al., 2008). The convective transport volume must exceed 50 mL/min to have a significant impact on the clearance of 

medium molecular weight molecules, which does not normally occur in hf-HD (Ledebo, 1999; Lornoy et al., 2000). 

 

Figure 2. Flow chart of different forms of hemodialysis (HD). The fluid flows in the hemodiafilter/dialyzer and the 

administration of the substitution fluid for low-flux HD, high-flux HD, and HDF are demonstrated.     

 

Source: Authors. 

 

In addition, the biocompatibility of high-flux membranes reduces chronic inflammation and oxidative stress, which is 

strongly associated with malnutrition and atherosclerosis (Pieroni et al., 2015). High-flux dialysis seems to be an efficient 

alternative compared to other dialysis methods which make use of diffusion and convection, and a satisfactory compromise 

between efficiency and practicability (Donadio et al., 2017). However, there is no agreement on the equivalence of the 

techniques (i.e. studies demonstrate the superiority of hemodiafiltration technique when compared to hf-HD (Abad et al., 2016; 

Locatelli et al., 2018; Peters et al., 2016). Thus, further studies and clarifications on both techniques in terms of molecule 

clearance and interference in quality of life are necessary. 

 

3.2 Online hemodiafiltration (HDF) 

Previously called online haemofiltration was developed with the goal of improving filtration capacity of HD. This 

modality makes use of diffusion associated with convection and promotes the removal of medium molecular weight molecules, 

with this being the main advantage when compared to the conventional modality (Pecoits-Filho et al., 2019; Thomas & Jaber, 

2009). Weight loss control in this modality is done by infusing a replacement fluid, which has a similar composition to plasma 

water, and must be sterile and non-pyrogenic. This infusion can be administered before (pre-dilution) or after (post-dilution) 

the dialysis filter (Figure 3) (Ledebo, 1999; Ledebo & Blankestijn, 2010; Petrie et al., 2008). 
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Figure 3. Schematic illustration of pre-dilution and post-dilution online hemodiafiltration. The infusion of a replacement fluid 

can be administered before (pre-dilution mode) or after (post-dilution mode) the dialysis filter. This fluid has a composition 

similar to plasma water, is sterile and non-pyrogenic. 

 

Source: Authors. 

 

Online hemodiafiltration was first described in the 1970s, however it remains rarely used (Chuasuwan et al., 2020). 

Several studies have compared HDF to other dialysis methods, however, Donadio et al. (2017) concluded that HDF is a more 

efficient treatment than low flux hemodialysis, but it is not accessible to all patients. According to Schiffl (2019), only 7% of 

patients worldwide are treated with HDF, while less than 1% of patients have access to this dialysis technique in the United 

States, as well as in Latin America. 

 

4. The Clearance of Molecules 

Uremic toxin clearance is directly related to kidney functions. The main renal clearance mechanisms are glomerular 

filtration and tubular secretion, which is characterized by transporter proteins that mediate the influx of uremic toxins through 

the basolateral membrane and subsequent efflux through the luminal membrane of renal tubule cells, in addition to being 

responsible for the reabsorption of these solutes (Suchy-Dicey et al., 2016; Wang & Kestenbaum, 2018). However, dialysis 

techniques in ESRD patients become essential instruments for the removal (at least partially) of uremic toxins from the body 

(van Gelder et al., 2020; Yamamoto et al., 2016). These compounds are classically divided according to physicochemical 

properties into three groups: small water-soluble, middle, and protein-bound molecules (Vanholder & Glorieux, 2003). 

 

4.1 Small water-soluble molecules 

Small water-soluble molecules are characterized by a molecular size less than 500 Da (Vanholder & Glorieux, 2003). 

This group includes creatinine (113 Da), urea (60 Da), trimethylamine N-oxide (TMAO; 75 Da), phenylacetylglutamine (264 

Da), and guanidine (59 Da), among others (Bain et al., 2006; Poesen et al., 2016). For example, creatinine is mainly cleared by 

glomerular filtration and is classically used as a marker of kidney function, being part of several formulas for calculating the 

estimated glomerular filtration rate (eGFR) (Porrini et al., 2019). Creatinine is also cleared by tubular secretion, being a 

substrate for organic cation transporters (OCT2) and organic anion transporter (OAT2) in the basolateral membrane as well as 
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multidrug and toxin extrusion (MATE1 and MATE2-K proteins) in the luminal membrane (Ciarimboli et al., 2012; Shen et al., 

2015; Tanihara et al., 2007; Urakami et al., 2004). TMAO is another uremic toxin that is associated with decreased renal 

function and cardiovascular outcomes in patients with CKD (Missailidis et al., 2016; Pelletier et al., 2019; Stubbs et al., 2016). 

Renal clearance of TMAO is due to glomerular filtration and tubular secretion, in which it is a substrate of OCT1, OCT2, 

OAT3, and multiple efflux transporters (Gessner et al., 2018; Miyake et al., 2017; Teft et al., 2017; Wu et al., 2017). Small  

water-soluble molecule removal can occur in dialysis therapies via diffusion in semipermeable membranes. Hai et al. (2015) 

showed that the reduction rate of TMAO, urea and creatinine after a HD session could reach 86%, 77% and 71%, respectively. 

In addition, Kim et al. (2019) reported similar removal percentages of small uremic toxins, such as urea, creatinine, uric acid, 

and phosphate, in the HDF modalities, high-flux dialyzers in HD (hf-HD), and medium cut-off (MCO) dialyzer in 

hemodialysis (MCO-HD).  

 

4.2 Middle molecules 

Middle molecules are mainly composed of peptides larger than 500 Da (Vanholder & Glorieux, 2003). Examples of 

this group are β2-microglobulin (11,818 Da), interleukin-6 (IL-6; 24,500 Da), complement factor D (26,750 Da), fibroblast 

growth factor 23 (FGF-23; 32,000 Da), parathyroid hormone (PTH; 9,225 Da), and others. Studies have shown that the type of 

dialyzer could influence the removal of middle molecular weight uremic toxins (Maduell et al., 2014; Wolley et al., 2018). 

More recently, MCO dialyzers were developed to obtain optimized permeability, with larger pores which allow the passage of 

middle molecules (up to about 50 kDa) and minimal albumin loss (Boschetti-De-Fierro et al., 2015; Wolley et al., 2018). Some 

clinical studies have shown that MCO-HD and HDF is able to more effectively remove middle molecules and a wider range of 

middle-molecule uremic toxins compared to HF-HD and HD (Belmouaz et al., 2020; Kirsch et al., 2017; Locatelli et al., 2015; 

Weiner et al., 2020). Belmouaz et al. (2020) demonstrated that MCO-HD had reduction rates of β2-microglobulin and FGF-23 

of 73% and 41%, respectively, which is significantly higher than hf-HD. However, the use of MCO membranes in large 

populations and their possible clinical effects remain to be elucidated. 

 

4.3 Protein-bound molecules 

Protein-bound molecules are compounds, usually of small molecular weight, that have high affinity for serum proteins 

(Vanholder & Glorieux, 2003). The main prototypes of this group are indoxyl sulfate (212 Da), p-cresyl sulfate (187 Da), 

indole-3-acetic acid (175 Da), hippuric acid (179 Da), phenylacetic acid (136 Da), kinurenine (208 Da), 3-carboxy-4-methyl-5-

propyl-2-furanpropanoic acid (CMPF; 240 Da), leptin (16,000 Da), and others (Barreto et al., 2009; Liabeuf et al., 2010). The 

most studied from this group are indoxyl sulfate and p-cresyl sulfate, both toxins which accumulate in the body with kidney 

dysfunction and are associated with mortality in CKD patients (Barreto et al., 2009; Liabeuf et al., 2010). Studies have 

demonstrated that approximately 90-98% of indoxyl sulfate and p-cresyl sulfate non-covalently bind to the Sudlow II binding 

site of albumin (Devine et al., 2014; Itoh et al., 2012; Smith & Pfaendtner, 2020; Suchy-Dicey et al., 2016). Tubular secretion 

plays an important role in the renal clearance of protein-bound molecules, in which indoxyl sulfate and p-cresyl sulfate are 

known substrates of OAT1 and OAT3 (Miyamoto et al., 2011; Suchy-Dicey et al., 2016; Wikoff et al., 2011; Wu et al., 2017). 

However, the removal of these compounds by dialysis therapies is limited due to protein binding capacity. Itoh et al. (2012) 

demonstrated that the reduction rate of indoxyl sulfate and p-cresyl sulfate after a HD session was only 31.8% and 29.1%, 

respectively. Some studies have shown that molecules (i.e. ibuprofen) are able to displace uremic toxins by competing for the 

same binding site on albumin, which leads to an increase in the free fraction of these uremic toxins and improve clearance by 

dialysis therapies (Madero et al., 2019; Shi et al., 2019; Tao et al., 2016). Madero et al. (2019) reported that the ibuprofen 

infusion into the bloodstream prefilter increased the indoxyl sulfate and p-cresyl sulfate concentration in the outflow dialysate 
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by approximately 2.4-fold in a cohort of 18 hemodialysis patients. Nevertheless, it is necessary to evaluate the use of displacers 

in relation to other protein-bound uremic toxins, their interaction with albumin and their long-term effect in larger populations 

(Van Biesen & Eloot, 2019).  

 

5. Biocompatibility of Hemodialysis Membranes 

Hemodialysis is a procedure performed in extracorporeal circulation, and the lack of biocompatibility may induce 

significant clinical and biochemical responses. Due to blood contacting with the components of the hemodialysis circuit, such 

as dialysis membranes, drains and intravenous fluids administered during the procedure, activation of inflammatory and 

immune pathways may occur, leading to dialysis-induced oxidative stress and membrane-induced inflammation, which are 

related to cardiovascular problems (Chang et al., 2014; Gomółka et al., 2020; Ojeda et al., 2020; Claudio Ronco et al., 2018; 

Claudio Ronco & Clark, 2018). This activation occurs via the alternative pathway of the complementary system, leading to 

anaphylatoxins being released into the bloodstream, activation of the coagulation cascade and of different cell types 

(monocytes, neutrophils, basophils, and platelets), and elevating plasma pro-inflammatory cytokine levels such as interleukin-

1β (IL-1), IL-6, IL-10, tumor necrosis factor-α (TNF-α) and stimulating the production of proteolytic enzymes by granulocytes 

(Cohen-Mazor et al., 2014; Gomółka et al., 2020; Ojeda et al., 2020). 

Due to the exposure time of the blood to the dialysis membrane surface, the biocompatibility of this HD component is 

crucial. Membranes have the function of removing water and solutes through various mass separation processes such as 

diffusion, convection and adsorption (Ojeda et al., 2020; Claudio Ronco & Clark, 2018). These membranes can be traditionally 

classified according to their composition and permeability, being made of cellulose (modified or unmodified) or synthetic. 

Unmodified cellulose membranes were the most common in the past, but they were eradicated from the market, and the same 

has been observed for modified cellulose membranes which have good performance and functionality when compared to 

synthetic ones; however, their biocompatibility and permeability are limited, preventing their application in convective 

therapies (Clark et al., 1999; Gomółka et al., 2020; Kalantar-zadeh et al., 2018; Ojeda et al., 2020; Claudio Ronco & Clark, 

2018). 

These limitations have been surpassed with the advance of biomaterials and with the improvement in the production 

of fibers that have resulted in new membranes with specific characteristics and refined properties, which have begun to present 

greater biocompatibility and permeability, in addition to expanding their categorization. Factors such as permeability index, 

hydrophilic index, adsorption capacity, and electric potential are now considered to define the membrane category (Ronco et 

al., 2018; Ronco & Clark, 2018). Studies show that the use of synthetic high-flux membranes have greater biocompatibility by 

reducing chronic inflammation and oxidative stress, as in the case of membranes used in hf-HD and HDF (Clark et al., 1999; 

Gomółka et al., 2020; Ojeda et al., 2020; Pieroni et al., 2015; Tomo, 2016).  

Morena et al. (2019) compared hf-HD and HDF in relation to their biocompatibility and noted no difference between 

the two methods, with no change in inflammatory parameters (IL-6 and TNF-α) nor in albumin concentration observed in 

samples from 32 patients submitted to the two dialysis methods and using four different types of hemodialysis membranes. 

Gomółka et al. (2020) also reaffirmed the adequate biocompatibility of these two dialysis methods by analyzing samples from 

19 patients, out of which neutrophil myeloperoxidase (MPO) was not activated during the hemodialysis process and proteolytic 

enzymes collagenase and cathepsin B showed an alteration in their levels, but normalization occurred after 8 weeks of 

treatment.  
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6. Cardiovascular Stability 

The most frequent clinical problem in patients during HD is cardiovascular (CV) instability, which occurs due to a 

decreasing blood volume during filtration, leading to vasoconstriction and reduced perfusion in some body regions, triggering 

systemic circulatory stress (Locatelli et al., 2018; Penny et al., 2018; Ronco et al., 2000). A patient may experience stunting of 

the myocardium and of other vital organs or precipitated ischemia as a consequence of this instability (Locatelli et al., 2018; 

Ok et al., 2013; Penny et al., 2018). Studies point out that it is necessary to accurately monitor possible causes of 

cardiovascular injuries during HD in order to prevent these cardiovascular events, and provide effective preventive 

intervention for such injuries (Penny et al., 2018). 

Despite studies pointing towards HDF and hf-HD as alternatives to HD to minimize the occurrences of these 

cardiovascular events, the clinical benefits of HDF compared to hf-HD continue to be debated. Articles highlight both the 

similarity of the techniques and the superiority of HDF over hf-HD (Table 1) (La Milia et al., 2019; Locatelli et al., 2015, 

2018; Shroff et al., 2018). La Milia et al. (2019) stated that the removal of Na+ balance and plasma tonicity did not differ 

between hf-HD and HDF and this was not a factor which could explain the superiority of HDF. Studies have evidenced that 

HDF can improve cardiovascular stability when compared to hf-HD (Locatelli et al., 2018) in patients receiving higher 

convection volumes, however this limits the reach of this technique, since patients who have suboptimal vascular access or 

time limitations associated with dialysis may not reach these convection volumes (Grooteman et al., 2012; Ok et al., 2013; J. 

R. Smith et al., 2017). 
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Table 1. Clinical studies comparing dialysis modalities. 

Reference Country and years Study type 
N. of 

patients 

Hemodialysis 

modalities 
Objectives Conclusion 

(Morena et al., 

2019) 

France 

2016-2018 

Prospective multicenter 

randomized comparative 

cross-over trial 

32 

 

hf-HD vs post-

HDF 

Solute clearance and 

biocompatibility profile 

Both dialysis methods were shown to be associated with good 

removal of the tested uremic toxins and good biocompatibility 

profiles, with an additional gain in removal performances with HDF. 

(Belmouaz et 

al., 2020) 

France 

2017-2018 

Cross-over prospective study 40 MCO-HD vs hf-

HD 

Myoglobin reduction ratio, 

clearance of larger middle 

molecules and PBUTs, 
interference in nutrition, 

inflammation, anemia and 

oxidative stress 

Compared to HF-HD, MCO-HD induces a higher myoglobin 

reduction ratio, but also reduces the pre-dialysis levels of other 

medium molecules, including beta2-microglobulin, and kappa and 
lambda free light chain. Thus, MCO-HD appears as a strategy in the 

removal of medium-molecular-weight toxins, and can be considered 

an alternative to HDF.  

(van Gelder et 

al., 2020) 

Netherlands 

2004-2009 

Randomized multicenter-

controlled trial 

80 HDF Clearance of PBUTs, mortality 

and cardiovascular events 

HDF did not consistently decrease plasma PBUT concentrations in 

patients and no relationship was found between PBUTs and 
cardiovascular endpoints and mortality. 

(Kim et al., 

2019) 

Republic of Korea 

2020 

Observational prospective 

study 

6 MCO-HD vs hf-

HD vs pre-HDF 

Clearance of larger middle 

molecules 

MCO-HD showed significantly greater clearance of large medium 

molecules and achieved better clearance of and kappa and lambda 

free light chain than hf-HD and HDF, without the need for large 
convection volumes or high blood flow rates. MCO-HD presents an 

advantage for older adult patients with vascular access deficiencies 

and HD patients without access to HDF. 

(Kirsch et al., 

2017) 

Austria and Germany  

2015 

Prospective, open-label, 4-

arm, randomized, active 

control, 
crossover pilot study 

20 MCO-HD vs hf-

HD 

Clearance of larger middle 

molecules 

MCO HD removed a wide range of molecules from the medium 

more effectively than high-flux HD and even exceeds the 

performance of high-volume HDF for large solutes, particularly 
kappa free light chain. 

(Donadio et al., 

2017) 

Italy 

2017 

Randomized cross-over 

study 

30 HD vs hf-HD vs 

HDF 

Safety, efficiency, and removal 

mechanisms 

of toxins 

The clearance of small toxins was similar between hf-HD and HD. 

β2-microglobulin was only removed with hf-HD, which had 

excellent tolerability. The efficiency of hf-HD was similar to HDF. 
Proteomic analysis demonstrated that only high-flow membranes 

remove and adsorb small proteins. hf-HD may be an efficient 

alternative to HDF. 

(Locatelli et 
al., 2018) 

Belgium, France, 
Germany, Italy, Spain, 

Sweden and United 

Kingdom 
2009-2011 

2012-2015 

Prospective multicenter 
randomized trial 

8567 HD vs HDF Mortality The results do not indicate that HDF provides superior patient 
survival compared to HD. 

(Peters et al., 

2016) 

Netherlands, Canada, 

Norway, France and 

Turkey 
2016 

Multicenter randomized 

controlled 

trial 

2973 HD vs HDF Mortality HDF reduced the risk of all-cause mortality and cardiovascular 

mortality. 

http://dx.doi.org/10.33448/rsd-v11i4.27237
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(Canaud et al., 

2006) 

European countries 

1998-2001 

Prospective multicenter trial 2165 Lf-HD vs hf-HD 

vs low-efficacy 
HDF vs high-

efficacy HDF 

Mortality HDF may improve patient survival regardless of its higher dialysis 

dose compared to the other modalities tested, but randomized 
controlled trials are still needed before recommendations can be 

made for clinical practice. 

(Francisco 
Maduell et al., 

2013) 

Spain 
2013 

Multicenter, open-label, 
randomized controlled trial 

21 HD vs HDF Mortality HDF reduces all-cause mortality when compared to HD. The leading 
causes of mortality, cardiovascular and infectious diseases, were 

significantly reduced. HDF can become the first-line option in 

hemodialysis patients. 

(Ok et al., 

2013) 

Turkey 

2007-2008 

Prospective, randomized, 

controlled 

trial 

782 Hf-HD vs HDF Mortality and cardiovascular 

events 

There was no difference between HDF and hd-HD with respect to the 

all-cause mortality rate and the rate of nonfatal cardiovascular 

events. However, when performing a post-hoc analysis, HDF with 
high replacement volumes was shown to provide a survival benefit in 

the study patients. 

(Grooteman et 

al., 2012) 

Netherlands, Canada 

and Norway 
2004-2009 

Prospective randomized 

study 

714 HD vs HDF Mortality and cardiovascular 

events 

HDF and HD proved similar with respect to all-cause mortality and 

cardiovascular events. For patients who received HDF the possibility 
of a survival benefit is suggested, although this subgroup finding 

requires confirmation. 

(Shroff et al., 
2018) 

United Kingdom 2014-
2019 

Non-randomised parallel-
arm intervention study 

150 HD vs HDF Growth and 
cardiovascular outcomes in 

children 

HDF effectively improves outcomes in children when compared to 
HD, including cardiovascular, anthropometric, nutritional and health-

related quality of life measures. Physicians and dialysis 

commissioners need to consider HDF therapy for children. 

(Locatelli et 
al., 2010) 

Italy 
2008-2010 

Prospective, 
multicenter randomized 

study 

146 HD vs online 
predilution 

hemofiltration 

(HF) vs pre-HDF 

Intradialytic hypotension Patients who were treated with HDF and HF showed a lower 
frequency of symptomatic intradialytic hypotension compared to 

patients who were treated with HD and, without relevant adverse 

effects. This beneficial effect was more pronounced in HDF, 
associated with a significant increase in pre-dialysis systolic blood 

pressure. 

(Den Hoedt et 

al., 2014) 

Netherlands, Canada 

and Norway 
2004-2010 

Randomized controlled trial 405 Hf-HD vs HDF Systemic inflammation Long-term HDF reduces inflammatory activity compared to HD. 

(Smith et al., 

2017) 

United Kingdom 2013-

2014 

Randomized, Single-Blind, 

Crossover Trial 

100 Hf-HD vs HDF Recovery Time Similar post-treatment recovery times and similar health-related 

quality of life scores for both modalities. 

(Leme et al., 
2020) 

Brazil 
2016-2017 

Cross-sectional study 176 Hf-HD vs HDF Vitality and physical activity The perceived post dialytic patient fatigue showed no association 
with physical activity. 

(Pecoits-Filho 

et al., 2020) 

Brazil 

2016-2017 

Prospective, multicenter 

randomized controlled trial 

195 Hf-HD vs HDF Physical activity Despite HDF achieving a high convective volume and a positive 

impact on solute removal, it did not improve measured physical 
activity compared to hf-HD. 

(Han et al., 

2020) 

Brazil 

2016-2017 

Prospective, multicenter, 

randomized controlled trial 

173 hf-HD vs HDF Self-reported sleep duration The two dialysis modalities had no effect on self-reported sleep 

duration. 

Source: Authors. 
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7. Survival  

Renal function impacts the QoL of patients in ERSD and, like the use of RRT, interferes with morbidity and mortality 

(Perl et al., 2017; Peters et al., 2016). Studies based on cross-sectional and validated measures of health-related QoL among 

patients undergoing HD show a dramatic reduction in QoL when compared to the general population and to patients with other 

chronic diseases. Therefore, care of HD patients includes providing adequate nutrition as well as sufficient dialysis, 

maintaining vascular access, minimizing hospitalizations, and most importantly improving or maintaining their quality of life 

(Table 1) (Abdelsalam et al., 2020). 

The high morbidity and mortality rates in patients undergoing HD have been associated with inadequate rates of the 

removal of medium molecular weight molecules, which has influenced the implementation of new HD techniques such as hf-

HD or HDF and of using new classes of filtration membranes (Morena et al., 2019; Okuno et al., 2009; Peters et al., 2016). 

Eknoyan et al. (2002) demonstrated that hf-HD significantly impacts survival in the long term, with a 32% reduction in 

mortality in patients who participated in the study. Other studies also evidence an interference of hf-HD in decreasing the 

incidence of complications, treatment duration, and in improving survival (Table 1) (Bousquet-Santos et al., 2019; Xue et al., 

2020; Zhao et al., 2019). 

Studies in the literature on the influence of HDF on patient survival diverge (Locatelli et al., 2018). Articles state that 

despite providing additional elimination of medium molecular weight toxins compared to HD, HDF is not associated with a 

lower mortality risk (Peters et al., 2016). However, other clinical studies in dialysis patients have shown benefits of this 

technique in relation to survival. Peters et al. (2016) noted that patients undergoing HDF had a considerably lower risk of all-

cause mortality than those receiving HD, while the risk of long-term CVD mortality in HDF patients was 31% lower than in 

patients receiving HD. Compared to hf-HD, there is no consensus on the superiority of HDF (Figure 4). 

 

Figure 4. Average and standard deviations of all-cause mortalities related to HD, hf-HD and HDF. From references 

(Chuasuwan et al., 2020; Ok et al., 2013; Shroff et al., 2018; Den Hoedt et al., 2014, and Villa et al., 2011), HDF to HD ratios 

were obtained and then converted to HDF to hf-HD ratios based on reference (Ojeda et al., 2020), which compared all-cause 

mortalities among these 3 dialysis methods. 

 

Source: Authors. 
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8. Safety and Cost 

HD is a costly treatment that is essential for ESRD patients (Villa et al., 2011). Safety and costs aspects of 

implementing HD modalities are relevant and could have an impact on public and private health systems, especially 

considering the increase in the prevalence and incidence of CKD worldwide (Bikbov et al., 2020; Villa et al., 2011).  

Regarding safety, the International Organization for Standardization (ISO) 23500-5:2019 and other regulatory 

guidelines specify the quality aspects, such as chemical and microbiologic quality standards, for dialysis fluids used in HD, 

HDF and related therapies (Kawasaki et al., 2009). Historically, failures in the quality control system in dialysis have led to 

contamination outbreaks, which has diminished over time due to best practices and regulatory standards (Coulliette & Arduino, 

2013; Roth & Jarvis, 2000). HDF uses especially large convection volumes and the substitution fluid needs to be sterile and 

non-pyrogenic as it is infused into the patient, and is therefore important to ensure a safe and effective procedure (Tattersall & 

Ward, 2013; Ward et al., 2018). Clinical studies have supported the use of HDF, indicating quality and microbiological control 

(Bolasco et al., 2013; Penne et al., 2009; Vaslaki et al., 2000). Moreover, ultrapure dialysate reduced markers of inflammation 

and oxidative stress (Susantitaphong et al., 2013).  

The cost-effectiveness of low-flux HD, high-flux HD, and HDF modalities is comparatively complex considering the 

quality-adjusted life year (QALY), various economic aspects, and methodologies used. Lévesque et al. (2015) demonstrated 

that high efficiency HDF is cost-effective compared to low-flux HD.  Takura et al. (2013) also suggest that HDF is cost-

effective. Similarly, Ramponi et al. (2016) found that HDF is cost-effective compared to hf-HD, particularly among younger 

patients. However, Mazairac et al. (2013) reported that HDF cannot be considered a cost-effective modality when compared to 

HD, even in evaluating costs per QALY. 

 

9. Final Considerations 

Hemodialysis has proven to be a viable and important alternative in treating ESRD patients, even with the limitations 

involved in the initial modalities of renal function replacement. In this review, the definition of hemodialysis, as well as hf-HD 

and HDF, and their involvement in molecular clearance, cardiovascular stability, and survival were described. Information on 

biocompatibility of hemodialysis membranes, safety and cost were also discussed. Despite the existence of clinical studies, the 

superiority of HDF compared to hf-HD is not yet clear, and new clinical studies should be designed in order to clearly prove 

the benefits of HDF with respect to molecular clearance and mortality. 
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