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Abstract 

The construction of environmental indicators has allowed improving management models of natural resources 

through the evaluation of measures adopted and the monitoring of strategic actions to be used in the search for 

sustainable development. This work aimed at the construction and evaluation of indicators related to changes in 

carbon behavior due to changes of vegetation cover in the southern cerrado of Tocantins. The methodology adopted 

was from the OECD (Organization for Economic Cooperation and Development), the Pressure-State-Impact/Effect-

Response (PSI/ER) framework, for the construction of a matrix. For the validation of indicators, specific 

methodologies were used according to technical standards. The proposed matrix considers the following indicators: 

soil carbon, carbon stocks in humic fractions, labile carbon - C-Labile and carbon stocks in light organic matter - 

LOM. The use of indicators presented in this work is of great importance for the monitoring of carbon caused by 

changes in vegetation cover in the southern cerrado of Tocantins, as a subsidy for policies and actions aimed at 

reducing the impacts of environmental degradation. 

Keywords: Matrix of indicators; Organic matter; Environmental degradation. 
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Resumo  

A construção de indicadores ambientais vem possibilitar um aperfeiçoamento nos modelos de gerenciamento dos 

recursos naturais, por meio da avaliação das medidas adotadas e monitoramento das ações estratégicas a serem 

empregadas na busca do desenvolvimento sustentável. Esse trabalho teve como objetivo a construção e avaliação de 

indicadores relacionados as mudanças no carbono pela alteração da cobertura vegetal no cerrado sul do Tocantins. A 

metodologia adotada Foi da OCDE (Organização para a Cooperação e Desenvolvimento Econômico), o modelo de 

Indicadores de Pressão-Estado-Impacto/Efeito-Resposta (PEI/ER), para a construção de uma matriz. Para a validação 

dos indicadores foram utilizadas metodologias específicas conforme normas técnicas. A matriz proposta considera os 

seguintes indicadores: carbono no solo, carbono frações húmicas, carbono lábil – C-Lábil e carbono na matéria 

orgânica leve - MOL. A utilização dos indicadores apresentados neste trabalho é de grande importância para o 

monitoramento do carbono ocasionadas pela mudança de cobertura vegetal no cerrado sul tocantinense, como 

subsidio para políticas e ações voltadas a diminuição dos impactos a degradação ambiental.  

Palavras-chave: Matriz de indicadores; Matéria orgânica; Degradação ambiental. 

 

Resumen  

La construcción de indicadores ambientales permite mejorar los modelos de gestión de los recursos naturales, a través 

de la evaluación de las medidas adoptadas y el seguimiento de las acciones estratégicas a emplear en la búsqueda del 

desarrollo sostenible. Este trabajo tuvo como objetivo la construcción y evaluación de indicadores relacionados con 

los cambios en el carbono debido a la alteración de la cobertura vegetal en el cerrado sur de Tocantins. La 

metodología adoptada fue de la OCDE (Organización para la Cooperación y el Desarrollo Económico), el modelo 

Presión-Estado-Impacto/Efecto-Respuesta Indicadores (PEI/ER), para la construcción de una matriz. Para la 

validación de los indicadores se utilizaron metodologías específicas según normas técnicas. La matriz propuesta 

considera los siguientes indicadores: carbono en suelo, carbono en fracciones húmicas, carbono lábil - C-lábil y 

carbono en materia orgánica ligera - MOL. El uso de los indicadores presentados en este trabajo es de gran 

importancia para el monitoreo del carbono causado por el cambio de cobertura vegetal en el cerrado sur de Tocantins, 

como subsidio para políticas y acciones dirigidas a reducir los impactos de la degradación ambiental. 

Palabras clave: Matriz de indicadores; Materia orgánica; Degradación ambiental. 

 

1. Introduction  

Carbon is an essential chemical element in compounds of organic nature, being present in the oceans, atmosphere and 

terrestrial biosphere (RamesH et al., 2019). Worldwide, soils store four times more carbon than the biosphere and two to three 

times more carbon than the atmosphere (Le Quéré et al., 2018). Land use in the Cerrado generally leads to decrease in soil 

organic carbon through the adoption of inadequate management techniques, such as monocultures or unfertilized crops 

(Oliveira et al., 2016; Zinn et al., 2014). Intensive management practices and the use of conservation techniques have the 

potential to reduce soil organic carbon losses in agricultural lands (Bordonal et al., 2018). 

 One of the anthropic actions that contribute to CO2 emission in the atmosphere is the change in vegetation cover, 

more specifically deforestation and fires, where changes caused by forest fragmentation and reduction of native areas result in 

the loss of ecological functions, including oxygen production, CO2 storage and capture (Dantas et al., 2017). A study has 

shown that the interaction between forest and the absorbed carbon stock is directly linked to the regeneration stage, where the 

vegetation at advanced stage of regeneration has greater capacity to absorb carbon, compared to that at medium stage (Diniz et 

al., 2015). 

 Among the actions proposed to reduce these emissions, linked to the agriculture sector plan, pasture recovery, crop-

livestock integration, biological nitrogen fixation, reforestation, treatment of animal waste, adaptation to climate change and 

expansion of the no-tillage area stand out (Assad, 2019). 

 The identification and assessment of environmental problems require the definition of a set of indicators aimed at the 

various elements involved (Guimarães et al, 2010). Through the evaluation and measurement of impacts, it is possible to 

reverse their effects using indicators that lead to the monitoring of these impacts, which, when mitigated, can promote system 

sustainability, requiring their qualification and quantification on a temporal-spatial scale (Ribeiro et al, 2010). 

The model that has been internationally accepted and adopted for the study of global environmental indicators is the 

Pressure-State-Response (PSR) model developed by OECD (1998). The PSR framework is based on a concept of causality: 
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where human activities exert pressures on the environment and change the quality and quantity of natural resources (OECD, 

1993). Rubio et al. (2018) used the Pressure-State-Response (PSR) model to define desertification indicators as an ordering 

landmark (OECD, 1991, 1998); however, they reinforce that currently, the most used analysis landmark is the Conductor Force 

or Driver-Pressure-State-Impact-Response (DPSIR) Framework. 

Knowing the effects of changes in vegetation cover on soil carbon stocks (SCS) is of great importance for controlling 

CO2 emissions (Santana et al., 2019). Generally, undisturbed forests have the highest C stocks among land covers, so they are 

constantly used as a reference for maximum achievable stocks and C saturation (Chen et al., 2019). 

This work aimed at the construction and evaluation of indicators related to changes in soil carbon due to change of 

vegetation cover in the southern cerrado of Tocantins. 

 

2. Methodology 

The study area is located in the experimental farm of the Federal University of Tocantins, municipality of Gurupi, 

state of Tocantins at geographic coordinates 11º 46' 25” S and 49º 02' 54” W. The climate of the region according to 

Thornthwaite is of B1wA'a' type, with two well-defined seasons, with about six months of drought comprising the winter 

period and six months of rain corresponding to the summer. The average annual temperature is 27 °C and the average annual 

precipitation is 1,500 mm (SEPLAN/GIES, 2017). 

 The soil was classified as Petric Plinthosol, presenting plinthic diagnostic horizon B, which has the characteristics of 

having been formed in terrains with high water table or at least presenting temporary restriction to water percolation, favoring 

the development of a plinthic horizon, allowing the land to remain saturated with water for at least part of the year (Santos et 

al., 2018). The areas under study were located in Eucalyptus sp., natural pasture, agriculture and native vegetation areas of 

sensu stricto Cerrado as control. 

The native vegetation area has 22.82 ha, aged over 50 years and located at coordinates 11º46'13" S and 49º03'25" W. 

The Eucalyptus sp. stand is 11 years old, has total area of 0.65 ha and is located at coordinates 11º46'28”S and 49º03'08”W. 

Implantation was carried out by means of deforestation with crawler tractor with frontal blade, then, land plowing and 

harrowing were carried out. The pasture area has predominance of Andropogon grass, with approximately 50 years and 11.25 

ha, located at coordinates 11º46'19” S and 49º03'12” W. The area under corn cultivation has 0.95 ha and is located at 

coordinates 11º44'53” S and 49º03'11” W. Soil was prepared using a leveling harrow and disc plow, and weeds were controlled 

by manual weeding associated with the use of total action herbicides such as Glyphosate (Melo et al., 2017). 

For the construction of descriptors and later of indicators, the methodology of the Organization for Economic 

Cooperation and Development (OCDE, 1993), Pressure/State/Response (PSR) (UNEP and CIAT, 1996) was adopted. The 

PSI/SR matrix comes from the conceptual framework for the selection of indicators that were systematized into Pressure – 

State – Response (PSR), created by the Organization for Economic Cooperation and Development (OECD) in 1993 and 

adapted to Pressure-State-Impact/Effect-Response (PSI/ER) Framework by the United Nations Environment Program – 

PNUMA-CIAT, in 1996. Practical indicators were constructed with a view to monitoring carbon and ways to control it. The 

proposed matrix considers the following indicators: soil carbon, carbon stocks in humic fractions, labile carbon – C-Labile and 

carbon in light organic matter – LOM. 
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3. Results and Discussion 

Systems were defined with descriptors for monitoring carbon in the different vegetation covers based on the main 

characteristics of the evaluated system, and on the methodology adopted by the Organization for Economic Cooperation and 

Development (OECD, 1993). From descriptors selected for this system, 16 indicators were proposed (Table 1). 

 

Table 1 – Scheme used to define environmental indicators for monitoring carbon in different vegetation covers. 

*Microbiological activity: C concentration in microbial biomass (C-CBM), basal soil respiration (BSR), microbial quotient (qMIC), and 

metabolic quotient (qCO2). Fonte: OECD (1993). 

 

Fifteen indicators were proposed that are always subject to questioning, since the selection of aspects of reality to be 

considered is influenced by political options and different visions of reality. The selected indicators will be used to monitor 

carbon in the vegetation cover. In addition, these indicators will serve as a basis for better carbon management in the area. 

Table 1 shows the indicators arranged as defined in the PSI/ER Matrix (Pressure, State, Impact/Effect and Response). Among 

the selected indicators, those that compete with more intensity in response to carbon are highlighted below. 

 

Category Element Descriptors Indicators 

Resource Base 
Soil Carbon Monitoring 

-  Soil Carbon 

-  Soil carbon stocks (g kg-1) 

-  Carbon stocks in humic fractions (g kg-1) 

-  labile carbon – C-Labile stocks (g kg-1) 

-  Carbon stocks in light organic matter (g kg-1) 

-  Carbon stocks in microbial biomass (check unit) 

- C/N ratio (%) 

-  Light organic matter fractions 

-  Microbial biomass (mg C kg-1 soil) 

-  Microbiological activity * 

Vegetation Vegetation cover Plant biomass (%) 

System operation Technical management Carbon control 

-  Sustainable management practices (No.) 

-  Research group actions (No.) 

-  NGO Actions (No.) 

-  Corporate actions (No.) 

http://dx.doi.org/10.33448/rsd-v11i4.27638
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Table 2 – Environmental indicators for monitoring carbon in vegetation covers in the Pressure/State/Impact/Effect/Response 

Matrix – (PSI/ER) Pressure Indicators (P) State Indicators. 

Pressure 

Indicators (P) 

State Indicators 

(E) 

Impact/Effect Indicators 

(I/E) 

Response Indicator 

(R) 

- Changes in 

vegetation cover 

(ha) 

- C soil stocks (g kg-1) - Soil C (g kg-1) - Sustainable management practices (No.) 

- Plant biomass (%) - C stocks in humic 

fractions (g kg-1) 

- Light organic matter 

fractions (g kg-1) 

- Research group actions (No.) 

- Microbiological 

activity * 

- C-Labile stocks (g 

kg-1) 

- Microbial biomass 

(g kg-1) 

- NGO actions (No.) 

 

- C stocks in light 

organic matter 

(g kg-1) 

- Humic fractions (g 

kg-1) 

- Corporate actions (No.) 

 

- C stocks in 

microbial biomass 

(mg C kg-1 soil) 

- Labile Carbon (g kg-

1) 

 

  - C/N ratio (%)     

*Microbiological activity: C concentration in microbial biomass (C-CBM), basal soil respiration (BSR), microbial quotient (qMIC), and 

metabolic quotient (qCO2). Source: Authors (2022). 

 

3.1 Pressure Indicators 

a) Changes in vegetation cover (ha) 

  Changes in vegetation cover alter the physicochemical structures of the soil, which can affect the edaphic microbiota 

and consequently the carbon behavior. 

  Such diversity is threatened due to factors such as: excessive use of natural resources, expansion of the agricultural 

and forestry frontier, urban and industrial growth (Peixoto et al., 2016). Anthropogenic activities have caused increase in the 

concentration of greenhouse gases (GHG) in the atmosphere (Le Quéré et al., 2018), mainly due to changes caused in soil 

exploitation, which alter the capacity of soils to store CO2 adsorbed by plants (Santana et al., 2019). 

  One of the ways to increase carbon stock is in the preservation of native forests, reforestation, adoption of integrated 

farming, livestock and forestry systems, and the proper management of pastures and agriculture (Cook et al., 2016; Vicente et 

al., 2019; Magalhães et al., 2016), as these measures can remove large amounts of CO2 from the atmosphere through the 

process of photosynthesis (Cassol et al. , 2019) and store this carbon in aerial, underground and mainly soil biomass (Zelarayán 

et al., 2015). 

  In view of this, there is a need to assess soil carbon stocks in agricultural crops (Stockmann et al., 2015), given the 

large area occupied by agriculture in Brazil. Agriculture presents variations in SCS according to the type of management 

adopted. Conservation systems have better capacity to store carbon due to the lower intervention in soil preparation and 

planting processes compared to conventional cultivation (Bordonal et al., 2018). Coser et al. (2018) reported that in the short 

term, conservation systems will have great capacity to recover carbon lost with the implementation of agricultural crops. 

http://dx.doi.org/10.33448/rsd-v11i4.27638
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Systems such as No-tillage (NT) represent a little more than 50% of agricultural land in the country (Rossetti and Centurion, 

2015). 

  Over the years, soils in reforested areas show greater capacity to recover carbon lost in the deforested area (Frazão et 

al., 2014). Long-rotation forest plantations have greater capacity to store carbon because, over the time of forest maturation, 

there is greater litter deposition, which creates a physical barrier, helping soil properties and the potential to store carbon in the 

soil (Cassol et al., 2019). 

 

b) Plant biomass (%) 

  The greater deposition of plant material and its decomposition causes the carbon concentrations in the soil and humic 

fractions to be higher. The higher C proportion in the humic fraction is important for soil organic carbon, and this fraction is 

composed of organic residues with high degree of decomposition, generating greater molecular stability, indicating longer 

permanence of C in the soil, giving the area greater capacity to store carbon (Petter et al., 2017). The plant biomass called litter 

that covers the soil surface is responsible for improving soil porosity, increasing water infiltration and moisture retention 

capacity. In addition, it assists in the breadth of diversity and biological activity of organisms present in the soil, increasing the 

availability of nutrients for plants and improving soil fertility. 

 

c) Microbial activity (%) 

  Microbial activity was determinant in carbon stocks in the 0-20 cm soil layer. The metabolic quotient and the 

microbial quotient showed great sensitivity to changes in land use in the southern cerrado region, indicating greater stability 

and low degree of disturbance for areas of native forest, eucalyptus and pasture, pointing out to lower soil C losses in these 

areas. 

  Microbial diversity is an indicator of soil quality, as carbon present in soil microbial biomass (SMB) represents a 

highly sensitive indicator to assess soil changes (Dionísio et al., 2016). 

  BSR obtained variation from 0.44 to 0.82 mg C-CO2 kg-1 s h-1 in the 0-10 cm soil layer and from 0.35 to 0.61 mg C-

CO2 kg-1 s h-1 in the 10-20 cm soil layer, presenting variation similar to that of the C-CBM between the evaluated areas and in 

soil layers, except for the agricultural area. 

 The qCO2 of the evaluated soil showed variation from 1.68 to 4.36 mg C-CO2 g-1 C-CBM h-1 in the 0-10 cm layer and 

from 1.55 to 4.31 mg C- CO2 g-1 C-CBM h-1 in the 10-20 cm soil layer, with no significant difference between native forest, 

eucalyptus and pasture areas, with the highest values found in the agricultural area at both depths. 

 The microbial quotient (qMIC) presented variation at 0-10 cm from 0.92 to 2.15% and at 10-20 cm from 0.94 to 

2.59%, showing that there was significant difference between areas and the soil layers evaluated. 

 

3.2 State Indicators 

a) Soil carbon stocks (Mg ha-1) 

  Soil quality is defined by a series of physical (density and textural class) and biochemical (microbial activity and 

organic matter) factors, among other relevant factors, which play an important role in soil C storage (Freitas et al., 2017). Thus, 

this indicator represents great relevance. 

  Microbial activity was determinant in carbon stocks in the 0-20 cm soil layer. The metabolic quotient and the 

microbial quotient showed great sensitivity to changes in land use in the southern cerrado region, indicating greater stability 

http://dx.doi.org/10.33448/rsd-v11i4.27638
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and low degree of disturbance for areas of native forest, eucalyptus and pasture, pointing out to lower soil C losses in these 

areas. 

  Eucalyptus plantation showed the highest soil carbon stocks in the 0-50 cm layer (95.7 Mg ha-1) compared to the soil 

of the other evaluated areas, agriculture (95.54 Mg ha-1), pasture (80.14 Mg ha-1) and native forest (72.05Mg ha-1) in the 0-10 

cm layer. In the 10-20 cm layer, likewise, the soil of the eucalyptus area presented the highest results, followed by the soil of 

areas of agriculture, pasture and native forest. Gomes et al. (2019) carried out a mapping of the carbon stock in Brazil and 

estimated that approximately 50% of C (36.0 PgC) is stored in the first 30 cm of soil. For Santos et al. (2019), this difference is 

due to the greater volume of roots in the surface layers, indicating that most of the soil matter in these managements comes 

from root residues. 

 

b) Carbon stocks in humic fractions – humic C (Mg ha-1) 

  This indicator is estimated in Mg ha-1, where the highest C stock in the humic fraction is important for soil organic 

carbon, and this fraction is composed of organic residues with high degree of decomposition, generating greater molecular 

stability, indicating longer C permanence in the soil, indicating greater capacity of the area to store carbon (Petter et al., 2017). 

  The stock of humic C presented variation (0-50 cm) in the native forest, Eucalyptus, Pasture and Agriculture, 

respectively at depths of 0-50 cm of 31.68 Mg.ha-1; 38.02 Mg.ha-1; 28.14 Mg.ha-1; 35.33 Mg.ha-1. 

  The protection of humic C in aggregate fractions and the physical-biochemical protection through recalcitrant C in 

aggregates is one of the main mechanisms of C preservation in altered soils (Zhang et al., 2019). 

c) Carbon stocks – labile (Mg ha-1) 

  This indicator has strong correlation with microbial biomass carbon, suggesting that microbial activity and growth are 

strongly dependent on soil C-labile (Geraei et al., 2016). 

  The carbon present in soil microbial biomass is a good indicator of C-labile under different management practices. C-

labile stocks showed significant difference with the change in land use, with reduction in C-labile stocks with increasing soil 

depth. According to Ramesh et al. (2019), C-labile stocks are scarce in many soils, since it presents rapid microbial 

decomposition. 

  Microbial biomass carbon stock represented a good part of C stocks in the labile soil fraction, representing average of 

19.9% for the area of native forest; 22.1% for eucalyptus; 17.0% for pasture and 10.0% for agriculture in the first 20 cm of 

soil. As one of the labile soil fractions, CBM is an important indicator of soil changes caused by management practices 

(Culman et al., 2012). 

 

d) Carbon stocks in light organic matter - CS-LOM (Mg ha-1) 

  The change in land use established an increase in carbon stock in light organic matter (CS-LOM) of the analyzed 

areas compared to the native forest area, showing significant differences in all soil layers. 

  CS-LOM presented variation (0-50 cm) in the native Forest, Eucalyptus, Pasture and Agriculture, respectively at 

depths of 0-50 cm of 2.09 Mg.ha-1; 3.05 Mg.ha-1; 2.25 Mg.ha-1; 2.61 Mg.ha-1. 

  The native forest area showed the lowest stocks at all depths, which indicates that the change in land use generates an 

increase in carbon stocks in LOM. Studies by Moraes Sá et al. (2014) indicate that the light fraction is a sensitive indicator of 

change in land use. The superiority in CS-LOM in the first 30 cm of soil for the eucalyptus area may be associated with the 

high amount of litter available in the soil and microbial activity. The light fraction of soil organic matter is very sensitive to the 

http://dx.doi.org/10.33448/rsd-v11i4.27638
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interaction of the effects of management systems, type of vegetation, organic residues deposited on the surface and the fine 

root biomass in the surface soil layer (Luo et al., 2019; Mayer et al., 2019; Pereira et al., 2010). 

 

e) Carbon stocks in microbial biomass - C-CBM (Mg ha-1) 

  C-CBM presented variation, and the stock of humic C presented variation in the native forest, Eucalyptus, Pasture and 

Agriculture, respectively at depths of 0-20 cm of 572.26 Mg.ha-1; 924.99 Mg.ha-1; 459.12 Mg.ha-1; 256.57 Mg.ha-1, where in 

general, there were no significant losses between the soil layers of areas, with the exception of agriculture. Kaschuk et al. 

(2010) evaluated soil microbial biomass over three decades in Brazilian ecosystems and found values ranging from 46 to 1386 

mg C kg-1 of soil in different soil covers in the Cerrado region. Most likely, the low organic matter supply in the agricultural 

area has reduced the activity of soil microorganisms and consequently reduced C-CBM in contrast to the greater availability of 

organic matter mainly via litter for the area of native forest and eucalyptus, and via fine root system for the pasture area has 

ensured a more stable microbial activity and possibly higher CBM content. 

 

f) C/N Ratio (%) 

  The carbon/nitrogen ratio (C/N) showed little variation between soil layers and evaluated areas. On average, the 

lowest and highest C/N ratios were in the 40-50 cm layer, with values of 10.87 and 12.56, respectively. Stability in the C/N 

ratio is attributed to simultaneous and proportional changes (gains or losses) in soil organic carbon and N (Zinn et al., 2018). 

Kirkby et al. (2016) evaluated the C/N ratio at two different times in an Australian soil and found that in both times, there was 

reduction in the C/N ratio with increasing depth, presenting very similar results, which corroborates the proposal that C and N 

present proportional losses and gains. 

  Regarding the average C/N indicator, the lowest and highest ratio were in the 40-50 cm layer, presenting values of 

10.87 and 12.56, respectively. Stability in C/N ratio is attributed to simultaneous and proportional changes (gains or losses) in 

soil organic carbon and N (Zinn et al., 2018). 

  

3.3 Impact/Effect Indicators 

a) Soil C (g kg-1) 

  In general, soil carbon concentrations decreased with increasing depth for all vegetation covers, showing significant 

differences mainly in the surface soil layer (0-10 cm). The eucalyptus and agriculture areas had the highest soil carbon 

concentrations in the 0-10 cm (22.86 and 17.49 g kg-1) and 10-20 cm (17.58 and 15.48 g kg-1) soil layers, respectively, 

exceeding the area with native forest and pasture, which did not present significant differences from each other. 

  Considering the surface soil layer (first 30 cm), there is approximate concentration of 800 GtC, equating to the 

amount of C present in the atmosphere, emphasizing the importance of C stocks in the soil, which, undergoing changes, can 

cause significant impacts on the CO2 concentration in the atmosphere (Lucena, 2019). The exchange of carbon between 

terrestrial ecosystems and the atmosphere is estimated to be between 100 and 120 GtC and much of this exchange is due to the 

effect of human activities on land use, such as the conversion of forests into agricultural land, and natural variation and indirect 

effects on the environment such as eutrophication, increased atmospheric CO2 concentrations or climate changes (Houghton, 

1993). 

  The C-labile content, on average, represented 9.7% of the total carbon concentration of areas and was found at higher 

concentrations in the surface soil layer, given the greater presence of biomass on the soil surface, reducing with increasing soil 

depth.  
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b) Light organic matter fractions (C-LOM) (g kg-1) 

  C-LOM is an intermediate fraction between the organic material accumulated by plants and wet SOM; thus, TOC is 

directly related to C-LOM (Filho et al., 2018). 

  C-LOM in the soil of eucalyptus, pasture and agriculture areas compared to the reference area (native forest) 

presented concentrations of 69.2%, -2.6% and 23.1%, respectively, in the 0-10 cm soil layer, 54.5%; -3.0% and 27.3% in the 

10-20 cm soil layer, 50.0%; 12.5% and 29.2% in the 20-30 cm soil layer, 28.6%; 9.5% and 33.3% in the 30-40 cm soil layer 

and 5.6%; 11.1% and 38.9% in the 40-50 cm soil layer (Figure 10). Apparently, there is significant reduction in C-LOM with 

increasing depth for eucalyptus and increase for agriculture, indicating lower C-LOM losses in deeper layers for the latter. 

  Carbon in the light organic matter (C-LOM) presented itself differently according to soil management, showing 

significant differences in the surface soil layer and small variations between areas evaluated in the last soil layer, ranging from 

0.38 to 0.66 g kg-1 in the 0-10 cm soil layer; from 0.32 to 0.51 g kg-1 in 10-20 cm; from 0.24 to 0.36 g kg-1 in 20-30 cm; from 

0.21 to 0.28 g kg-1 in 30-40 cm and from 0.18 to 0.25 g kg-1 in 40-50 cm soil layer. 

  C-LOM in the soil of eucalyptus, pasture and agriculture areas compared to the reference area (native forest) 

presented concentrations of 69.2%, respectively; - 2.6% and 23.1% in the 0-10 cm soil layer, 54.5%; - 3.0% and 27.3% in the 

10-20 cm soil layer, 50.0%; 12.5% and 29.2% in the 20-30 cm soil layer, 28.6%; 9.5% and 33.3% in the 30-40 cm soil layer 

and 5.6%; 11.1% and 38.9% in the 40-50 cm soil layer. Apparently, there is significant reduction in C-LOM with increasing 

depth for eucalyptus and increase for agriculture, indicating lower C-LOM losses in deeper layers for the latter. This 

phenomenon was explained by Tan et al. (2007), who evaluated the light fractions of soil organic carbon related to land use 

and preparation, and attributed this smaller reduction of C-LOM in conventional plantations to soil homogenization due to its 

preparation for planting, causing the content of carbon to be higher in the underground soil. 

  Apparently, there is significant reduction in C-LOM with increasing depth for eucalyptus and increase for agriculture, 

indicating lower C-LOM losses in deeper layers for the latter. 

 

c) Microbial biomass (g kg-1) 

  This indicator plays an essential role in the soil as it acts in the organic matter decomposition and accumulation and in 

the stocks of nutrients. So, soils with high microbial biomass content store and cycle more nutrients (Samarão, 2007). 

  The greatest changes in soil microbial biomass (SMB) are concentrated in the surface soil layers, which confirms the 

greater presence of microbial activity in the first soil layers (Leeuwen et al., 2017). According to study carried out by Fedrigo 

et al. (2020), grazing intensities interfere with the incidence of CO2, e.g., in intermediate ones of 12%, disturbances in the soil 

microbial biomass are lower when compared to heavy grazing > 12%, emitting less CO2 for the atmosphere for each animal 

unit produced. The soil organic matter contents and microbial biomass in grazed systems are lower than those in areas 

excluded from grazing for a long period. 

 

d) Humic fractions (g kg-1) 

  The carbon concentrations in the humic soil fractions decreased with increasing depth, with maximum values in the 0-

10 cm soil layer and minimum values in the 40-50 cm soil layer, presenting variation in AF, AH and HUM, respectively, from 

2.28 to 0.67 g kg-1, 3.20 to 0.93 g kg-1; and 8.22 to 2.41 g kg -1. Filho et al. (2018) attribute the higher carbon concentration in 

the soil and in the humic fractions in the surface layer to the death of fine roots, mainly herbaceous, disposal of plant biomass 

in the soil and the microbial activity, which acts in the stabilization of organic matter present in the soil. 
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e) Labile Carbon (g kg-1) 

  Labile carbon (C-labile) is a primary energy source that can be easily degradable or consumed by soil microorganisms 

(Ramesh et al., 2019). The C-labile content, on average, represented 9.7% of the total carbon concentration of areas and was 

found at higher concentrations in the surface soil layer, given the greater presence of biomass on the soil surface, reducing with 

increasing soil depth.  

  The agricultural area showed the lowest C-labile levels, 23.8% lower than the reference area (native forest). 

According to Blair et al. (1995), where there is recent change in land use, there is reduction in C-labile. In conventional crops, 

soil disturbance due to land preparation, low biomass input and loss of soil nutrients generate a rapid decrease in the C-labile 

content (Dias et al., 2019; Bongiorno et al., 2019). 

 

3.4 Response indicator 

a) Sustainable Management Practices (No.). 

  Intensive management practices and use of conservation techniques have the potential to reduce COS losses in 

agricultural lands (Bordonal et al., 2018). On average, C accumulation rates in soils under conventional and no-tillage systems 

vary between 0.3 and 1.91 Mgha-1 year-1 (Bayer et al., 2010). Changes in land use and inadequate management practices lead 

to degradation and loss of soil quality, especially in surface layers, which causes changes in microbial activity, changing the 

functional role of microorganisms in the C cycle in the soil, which confirms the mediator role of microorganisms in soil 

turnover and nutrient recirculation, promoting C sequestration (Kooch et al., 2019; Tiwari et al., 2019; Shao et al., 2019). 

  The different types of management adopted in agricultural crops can reduce, maintain or increase SOM stocks 

compared to native vegetation, thus having a significant influence on their stocks (Costa et al., 2013). 

 

b) Research group actions (No.) 

  The survey of the number of researches and publications carried out by the laboratory allows monitoring carbon. 

Research publication allows the dissemination of ideas about this topic, as well as contact with other researchers in the area. 

This indicator is measured from the number of publications (No.) (Brasil, 2010). 

 

c) NGO actions (No.) 

  Some NGOs are concerned with carbon sequestration, such as WWF-Brasil, which leads an action to alert 

governments, companies and civil society to the challenge of climate change, a phenomenon caused by the accumulation of 

greenhouse gases in the atmosphere. 

 

d) Corporate actions (No.) 

  Global warming has grown noticeably in recent years. In 1997, the Kyoto protocol was created, in which goals were 

established to be carried out and fulfilled from 2008 to 2012 by signatory countries. The protocol proposes emissions trading 

and the clean development mechanism (CDM), through reduced emissions certificates, but does not currently recognize the 

mitigation of emissions through the preservation of natural forest areas existing prior to the signing of the agreement (Nishi et 

al. al 2005). 

  The Kyoto Protocol established that developed countries formally committed to reduce their gas emissions to mitigate 

the greenhouse effect by 5% below 1990 levels with the objective for the 2008 - 2012 period. The second important point of 

the protocol is that the concept of commercialization of credits for the sequestration or reduction of greenhouse gases will be 
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accepted. Therefore, companies that reduce emissions below their targets may sell this credit to another country or companies 

that have not reached the expected degree of reduction (Kyoto, 1998). 

 

4. Conclusion 

The identification of environmental indicators for monitoring carbon in the different vegetation covers constitutes a 

very important tool for a better understanding of the system, allowing more viable recovery practices. 

The proposed matrix of environmental indicators for carbon monitoring proved to be satisfactory, contributing to a 

better understanding of the processes that occur in the different land uses in the southern cerrado of Tocantins in relation to soil 

carbon, in addition to allowing better management choices. 

The use of indicators presented in this work can serve as a subsidy for policies and actions aimed at reducing the 

impacts of environmental degradation. 

For future work, be sure to survey the carbon in the aerial biomass. 
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