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Abstract  

Generalized additive mixed models (GAMM) are useful when the nature of the data is longitudinal, which include the 

nonlinearity of the individual trajectories of the subjects, associating these with the assumption of the existence of 

random effects for each individual. In these models it is possible to rewrite the predictor as a sum of smooth 

nonparametric functions and then use the smooth technique P-spline. Thus, using the generalized additive mixed 

models with P-splines, this article aims to verify the impact of the types of mortars and the concentration levels of an 

additive content on the evolution of mortar weight contained in specimens over time, verifying possible differences 

between combinations of types and concentration. In relation to the results, it was observed through the analyzes that 

there were significant differences in the estimated curves of the weight evolution in both types of mortar, concluding 

that the matured mortar has a water absorption speed by capillarity higher than dry mortar. All the necessary 

assumptions for the validity of the model have been satisfied.  

Keywords: Generalized additive mixed models; Longitudinal data; Nonparametric regression; P-splines. 

 

Resumo  

Os modelos aditivos generalizados mistos (GAMM) são úteis quando a natureza dos dados é longitudinal, que inclui a 

não linearidade das trajetórias individuais dos sujeitos, associando-as à suposição da existência de efeitos aleatórios 

para cada indivíduo. Nesses modelos é possível reescrever o preditor como uma soma de funções não paramétricas 

suaves e então usar a técnica de suavização P-spline. Assim, utilizando os modelos mistos aditivos generalizados com 

P-splines, este artigo tem como objetivo verificar o impacto dos tipos de argamassas e dos níveis de concentração de 

um teor de aditivo na evolução do peso da argamassa contida nos corpos de prova ao longo do tempo, verificando 

possíveis diferenças entre combinações de tipos e concentração. Em relação aos resultados, observou-se através das 

análises que houve diferenças significativas nas curvas estimadas da evolução de massa nos dois tipos de argamassa, 

concluindo que a argamassa maturada possui uma velocidade de absorção de água por capilaridade superior à 

argamassa seca. Todas as suposições necessárias para a validade do modelo foram satisfeitas. 

Palavras-chave: Modelos aditivos generalizados mistos; Dados longitudinais; Regressão não paramétrica; P-splines. 
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Resumen  

Los modelos aditivos generalizados mixtos (GAMM) son útiles cuando la naturaleza de los datos es longitudinal, que 

incluyen la no linealidad de las trayectorias individuales de los sujetos, asociándolas a la suposición de la existencia 

de efectos aleatorios para cada individuo. En estos modelos es posible reescribir el predictor como una suma de 

funciones no paramétricas suaves y luego usar la técnica suave P-spline. Así, utilizando los modelos mixtos aditivos 

generalizados con P-splines, este artículo tiene como objetivo verificar el impacto de los tipos de morteros y los 

niveles de concentración de un contenido de aditivo en la evolución del peso del mortero contenido en las muestras a 

lo largo del tiempo, verificando posibles diferencias entre combinaciones. de tipos y concentración. En relación a los 

resultados, se observó a través de los análisis que existían diferencias significativas en las curvas estimadas de 

evolución del peso en ambos tipos de mortero, concluyendo que el mortero madurado tiene una velocidad de 

absorción de agua por capilaridad superior al mortero seco. Se han satisfecho todos los supuestos necesarios para la 

validez del modelo.  

Palabras clave: Modelos aditivos generalizados mixtos; Datos longitudinales; Regresión no paramétrica; P-splines. 

 

1. Introduction  

Regression analysis is a statistical technique used to investigate and to model the possible relationship between a 

dependent variable and one or more independent variables, which way be linear or nonlinear. In the nonlinear regression 

models, the observational data is modeled by a function that is a nonlinear combination of the model parameters, and in 

general, the usual assumption about the normality of error terms is considered in the simplest models, which is sometimes not 

checked depending on the nature of the dependent variable. Ruppert et al. (2003) describe that in the past, due to the lack of 

computational resources and statistical approaches that contemplated certain observed characteristics, many of the approaches 

were used through transformation in the response variable, but, this fact is associated with the loss of information mainly in 

data that nonlinear effects.  

In the literature, it is not difficult to find data with nonlinear and/or longitudinal characteristics, being modeled by a 

simple regression models. For example in Canova et al. (2009) and Canova et al. (2015), the evolution of mortar weight over 

time, in different configurations, is modeled using simpler models. However, these models bring with them the loss of 

information, since they do not consider in their forumation more than one value for each individual i, at time j, being necessary 

to take the average of the observations in each i, at time j. In these cases, the ideal would be adopt a model that considers the 

specifics of each individual, which would present an efficiency gain in terms of adjustment. 

Given what has been described, considering the hypotheses that the nature of the data is complex, some classes of 

regression models are available, such as Generalized Additive Models (GAM’s) proposed by Hastie and Tibshirani (1990), in 

which these have been widely used in research involving longitudinal data or data with the need to use this class of models 

(Benedetti et al. 2009; de Jong et al. 2015; Shadish et al. 2014; Nores & Díaz, 2016; Zhang et al. 2020; Gressani et al. 2021), 

whereas this class of models has greater flexibility when compared to the usual parametric regression methods, since the 

parametric methods require the researcher to know the functional form of the trend that may be present in the data. 

In recent years, with the advancement of computational techniques and the need to describe nonlinear trends, the 

functions splines has also been used frequently in the analysis of longitudinal data (Achmad et al. 2018; Andrinopoulou et al. 

2018; Garcia-Hernandez & Rizopoulos, 2018; Prawanti et al. 2019; Islamiyati et al. 2019). Toshniwal et al. (2017) defines the 

functions splines as polynomial functions by parts capable of modeling complex curves, choosing different points in the 

observation range, which Keele and Keele (2008) denominates as knots, where such polynomial functions are adjusted to each 

interval to be modeled. 

According Ruppert et al. (2003), several techniques are found to represent this adjustment by parts, such as linear 

spline, cubic spline, B-spline among others. Regarding the existing techniques in the literature to represent this adjustment by 

parts, according Momen et al. (2019) a function B-spline can be expressed as a set of polynomial functions of order m for each 

interval limited by the knots, where, the connections in the knots are smoothed which does not occur in the linear spline, thus 
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becoming a single continuous curve. In order to provide greater flexibility to the model and avoid a possible overfitting, Eilers 

and Marx (1996) proposed a new technique called P-spline, that consists of the union of B-splines with discrete penalty (to 

control the smoothness of the adjustment) inserted in the log-likelihood function. Over the past decades, progress has been 

made in the use of P-splines in the context of generalized additive models, due to the possibility of rewriting the linear term by 

summing up smooth functions not known, not specified in a parametric context, ie, replace  in the predictor with 

sum . 

With the purpose of introducing in a model the effect of the presence of overdispersion, correlation and the random 

effect to the additive predictor using nonparametric functions, Lin and Zhang (1999) extended the generalized additive models 

and proposed a new class of models called Generalized Additive Mixed Models (GAMM), where among the countless 

potentialities existing in this new class of models, the possibility of these being used in studies with experimental designs, 

whether nested or cross-checks, hierarchical data, grouped data and spatial data (Durbán et al. 2005; Polansky & Robbins, 

2013; McKeown & Sneddon, 2014; Baayen et al. 2018; da Silva et al. 2020; Sudo et al. 2021). It is highlighted in Durbán et al. 

(2005) that in this class of models it is possible to estimate the curves of individual differences using nonparametric smooth 

functions, considering the presence of random effects associated with individuals classified between treatment groups. 

Therefore, to avoid applying transformations in the response variable and the use of simpler parametric models that 

cause the loss of information, common in problems involving data with nonlinear and/or longitudinal characteristics, as noted 

in Canova et al. (2009) and Canova et al. (2015), we propose in this article the use of GAMM with P-splines, to model the 

relationship between the different configurations of a level of ground rubber powder from waste tires, added to two types of 

mixed mortar, contained by weight of specimens over time, in order to identify which of these admit a faster reduction of the 

requirement of water to the standard consistency defined by Rilem (1994). The remaining sections of the article are divided as 

follows. In Section 2.1, the definitions and specifications of the additive models and the generalized additive mixed models are 

presented. Section 2.2 describes the P-splines functions. In Section 2.3, the inferential part of the model considered is 

described. In Section 3 the proposed model is applied to a real dataset that concerns the evolution of the weight of specimens 

containing mortars of different configurations over time and finally, in Section 4 a conclusion is presented. 

 

2. Methodology 

2.1 Additive models and semiparametric mixed models 

The Generalized Additive Model (GAM) is described by Wood (2017) as having a structure 

                 

                              

where  is the response variable belonging to the exponential family,  are smooth functions of the covariates ,  

corresponds to the parameter vector and  is defined as the model matrix for any strictly parametric component. Mentions 

Hastie & Tibshirani (1990) that these models have the attractive feature of modeling the effects of covariates on the response 

as a sum of individual effects. In this context, it is possible to include random effects peculiar to the subjects, having a new 

class, called Generalized Additive Mixed Models (GAMM), thus allowing greater flexibility, since among its potentialities, the 

fact of the relation between the response variable and some explanatory variables admit parametric form, whereas the 

relationship between the mean of the response variable and the rest of the covariables can be nonlinear, combining the 
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parametric and nonparametric components in a single model, as seen in Hernando & Paula (2016). In general, GAMM’s are 

defined by Wood (2017) as 

                                                                        (1) 

                               

where  is the response variable, q is a fixed parameter vector,  are the matrix lines of the fixed effects of the model,  are 

the smooth functions of covariates ,  are the matrix lines of the random effects of the model, u ~ (0, ) is the vector of 

random effect coefficients with a defined positive unknown covariance matrix  and  ~ (0, ) is the vector of the error 

terms with covariance matrix . The model defined in (1) it admits as particular cases models in which the response has a 

normal distribution and the link function is identity, for example, the model expressed in (2), which has random intercept and 

slope. This can be used in situations involving longitudinal data, where Durbán et al. (2005) defines it by: 

                            with and ,                                                      (2) 

                      , with , 

where  is the response variable associated with the i-th individual and at the j-th observed moment,  are smooth 

functions that describe the behavior of the response variable at the instant, that will be estimated using P-splines, with i = 

1,…,m and j = 1,…, ,  is the term of random effect for each individual i, being characterized by containing only a single 

parameter, , which is usually called the variance component and  represents a set of distinct inside the range of the , 

being fixed and large enough the number of K-knots, chosen as quantiles of  with probability 1/(K+1),…,K/(K+1). Highlights 

Ruppert et al. (2003),  = máx(0, x), ie, for any number ,  is equal to  if  is positive and is equal to 0 otherwise. 

Therefore, mentioned authors further define that the  are treated as a random sample of distribution  for some 

 > 0, in which in this model the behavior of the response variable of the i-th individual is modeled considering a random 

intercept, causing the non-description of the individual trajectories. Thus, the idea is to add terms associated with the different 

inclinations of the trends, making the model more flexible and allowing the curves not to admit parallelism behavior, which is 

expressed by 

                           , with  and ,                         (3) 

where  and  are defined as the individual random intercept and the individual random slopes of each trajectory 

respectively. However, the appropriate model for such a situation is one that allows estimating the curves of specific 

differences between individuals using smooth nonparametric terms, in which the objective is to describe the average individual 

trajectories and to verify differences in each of these groups, where this model can be described as 

                            with , 

                    with                                                     (4) 
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where  is a smooth function that explains the trajectory of each individual and indicates the i-th sampling unit 

observed at the j-th instant. Curves specific to sample units , defined in model (4), have parametric  and 

nonparametric random components, with the linear part of the regression spline also being random and 

not a fixed effect. The terms  and  represent the individual random intercept and the individual random slopes for each 

curve respectively which follows normal distribution with vector of means 0 and matrix of variances and covariance . 

However, as we are interested in identifying possible differences between the combinations of treatments over time, it is 

necessary to adjust a model that describes the mean curves of each of the specimens in their respective treatment, that is, taking 

into account consideration that there is the presence of the random effect to each individual and that there is interaction 

between groups of treatments with the continuous predictor, in which the model (4) can be extended to 

                    

                                     (5)            

with ;  and , where  = 1 if  and  = 0 

otherwise. In this model, we have a common variance parameter Var( ) =  , l = 2,…,L for all curves, so it is assumed 

that the curves have similar smoothness, however, the random effects are independent of the smooth functions, resulting in the 

fact that the curves will be different. It should also be noted that the parameter  suffers restrictions so that fixed effects are 

identified, so it is assumed that  =  = 0, that is, is the estimated curve for l = 1 

and  will be the different curves estimated for the treatment levels. Model defined in 

(5) can be written in matrix form, in the context of P-splines, as a mixed models as follows 

                                                                                                                                                                    (6) 

where the random effects matrix Z is defined by 

, 

the random effects vector u is expressed by 

 

and the covariance matrix G is written as 

                                                                                                        (7) 
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It should also be noted that for certain values of  and  , estimates of  are obtained by the method of penalized least 

squares defined by 

 

where  controls the over parameterization of the regression function by placing a penalty on the smoothness of  and 

then getting smooth curves and  is the smooth control parameter expressed by . Mentions Durbán et al. (2005) that 

smooth through penalized splines corresponds to the ideal predictor in a mixed model structure assuming . 

2.2 P-spline 

 

According to Currie & Durbán (2002), P-spline is defined as a combination of B-splines and a function of penalizing 

differences of order associated with the estimated coefficients of the bases B-splines, where the use of this tool helps to reduce 

the flexibility of B-splines thus avoiding over-adjusting the curve. Thus, the use of P-splines allows the researcher to be free to 

choose the number of knots. The authors Eilers & Marx (1996) present in their article an interesting result regarding modeling 

involving the combination of B-splines, with respect to the integral of the second squared derivative can be expressed as a 

quadratic function in the coefficients associated with the sum, where , that is, it is a function that 

composes sums of B-splines. Highlight Eilers & Marx (1996) that for normally distributed data, the model in its matrix form is 

defined by 

, 

where ,  the curve of model and  is defined as the regression base function built from 

the variable . To estimate the regression coefficients, the function of the penalized sum of squares is minimized. Thus, the 

function of penalized least squares is expressed by 

, 

where,  is the matrix that penalizes the coefficients, d is defined as the order of the difference’s operator  

for the components  of B-splines, this being rewritten as a dimension matrix , where, 

 and  the smooth control parameter and we still have to  is recursively calculated by 

. 

 

One of the advantages of applying a penalty to the coefficients B-splines is the reduction of the dimensionality of the 

overfitting problem, as it does not depend on the degree adopted for B-splines, in such a way that it is possible to combine any 

order of the penalty with any order of the bases B-splines. An interesting property inherent in the use of P-splines is that they 

can conserve the moments of the data, that is, the average and variance of the estimated curve will be similar to those of the 

data. Durbán (2007) presents a result regarding the degrees of freedom of adjustment, which he calls effective degrees of 

freedom, which consists of a good approximation of the dimension of the vector of parameters defined by the smooth matrix, 

in which the trace of the matrix  will depend on the smooth parameter  and more, the positive values of refers to 
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effective degrees of freedom, that is, whether  is very small, we have that the trace(  where  is the 

number of knots. Already is  is very large is trace( . Durbán et al. (2005) mention that if the smooth parameter 

 equals zero, then the degrees of freedom of adjustment of the model configure the dimension of the base matrix  

subtracting the number of model constraints, however, if the smooth parameter  is very large, the model is said to be not very 

flexible and therefore it will have very few degrees of freedom, we still have to define the degrees of freedom of adjustment in 

this type of model using the matrix trace . Regarding the selection of the smooth control parameter, several criteria are 

found in the literature, one of which is the Cross Validation Criterion, defined by Craven & Wahba (1978). There is also a 

result that generalizes the Cross Validation Criterion, denominated Generalized Cross-Validation Criterion, proposed by 

Friedman et al. (2001) 

 

with , is the trace( . The authors Friedman et al. (2001) emphasize that the best  will be the one that minimizes 

 or . 

2.3 Inference 

 

Corbeil and Searle (1976) describe that the estimates obtained by the maximum likelihood method have bias, since the 

degrees of freedom that are used to estimate fixed effects are not considered. Thus, instead of using the maximum likelihood 

method, the restricted maximum likelihood method (REML) of Patterson and Thompson (1971), with regard to this method, 

the degrees of freedom of estimation of fixed effects are taken into account. Thus, considering the model defined in (4), the 

restricted log-likelihood function is defined by 

 

where  is the estimates of the variance components and 𝐺 is the covariance matrix defined in (7). 

Therefore, the parameter vector  and the random effects vector  are obtained by 

BLUE , 

BLUP . 

Mentions Schaeffer (2004) what  contained in the BLUP of u is replaced by  and more, the BLUE of 

 is similar to the generalized least squares solution. According Durbán et al. (2005), evaluating the quality of fit of a 

nonparametric model with a parametric model is not a simple task. Consider the model defined in (2), the idea then is to verify 

if the function that describes the population average is linear or if there is any evidence of nonlinearity, that is, to compare the 

dissimilarities between models of this class, being these nested, containing additional terms regarding the observed specificities 

regarding the behavior of the dependent variable, in which the test hypotheses are given by 

. 
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The authors Ruppert et al. (2003) mention that one of the problems found when comparing these models is that the parameter 

of interest is defined in the parametric space [0; ∞), so they define the restricted likelihood ratio statistic as 

             

                                                                                                              

in which it cannot be compared with . Highlights Durbán et al. (2005) that due to the specificities of the model described 

here and the sample size to be studied, the implementation of the aforementioned method may not be trivial, thus, these same 

authors suggest that the restricted likelihood ratio statistic be compared with an approximation of the mixture to the chi-square 

distribution. 

 

3. Results and Discussion  

The experiment that gave rise to the data set of this work was performed by Canova et al. (2009). The mortars weight 

in specimens was observed over time, considering 10 levels for the treatment variable (Am1:0%, Am2:6%, Am3:8%, 

Am4:10%, Am5:12%, As1:0%, As2:6%, As3:8%, As4:10%, As5:12%), this being the combination between two types of 

mortar and five concentrations of a rubber powder content, where the terms Am and As represent two types of mortar, matured 

mortar (Am) and kiln-dried mortar (As) respectively, in which the first type was produced containing lime and fine sand 

washed from the river, which after receiving the addition of cement, became a compound mortar. The second type was 

produced containing lime and sand that passed through the maturation process, was kiln dried and received the addition of 

cement addition. 

The experiment was based on the procedure of NBR 9779/1995. Thus, the times for the readings of the weight of the 

specimens were defined below: up to 90 minutes every 10 minutes, from 90 to 150 minutes every 15 minutes, from 150 to 360 

minutes every 20 minutes, from 360 to 450 minutes every 45 minutes and 450 to 1350 minutes every 60 minutes. However, it 

was found that in the first 10 minutes it showed a dissimilar growth compared to the other periods, that is, there was an 

absorption of water by accelerated capillarity in both types of mortar, this being an atypical behavior for this situation, though 

that, common in longitudinal planned experiments as described Pinheiro & Bates (2006). Therefore, to avoid possible 

problems in the adequacy of the models, we have removed the initial evaluation time. The analyzes were performed in the 

software R (R Core Team, 2022). The Figure 1 presents the box-plot of the response variable for each of the treatments, in 

which it can be concluded that at the highest concentration levels, the average weight of the specimens decreases.  
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Figure 1: Box-plot of mortar weight by treatments. 

 

Source: Authors. 

 

The Figure 2 it presents the graphs of the average profiles of the response variable for each of the specimens, with an 

increasing behavior as time varies, and moreover, an oscillatory behavior is seen even in the initial instant.  

 

           Figure 2: Average profile of mortar weight for each sample unit over time. 

 

Source: Authors. 

 

http://dx.doi.org/10.33448/rsd-v11i6.29160


Research, Society and Development, v. 11, n. 6, e31011629160, 2022 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v11i6.29160 
 

 

10 

The Figure 3, presents the scatterplot and the fitted global trends by treatments, obtained using the method LOWESS 

(locally weighted scatterplot smoothing), verifying a number of observations that are outside of the fitted curves, that is, there 

is a variability between these observations, justifying the fact that you can use some model that takes this into account. 

 

Figure 3: Scatterplot of mortar weight by treatments with fitted curve obtained using the method LOWESS (locally 

weighted scatterplot smoothing). 

 

Source: Authors. 

 

It is also verified that the weight observed after the absorption of water by capillarity in each type of mortar, presents 

a lot of variation between the intercept and inclination, evidencing the fact that linear models will not present a satisfactory fit, 

result that was verified but is not being presented in this work. As a consequence, we considered the mixed models with 

random effects. In the past with the absence of computational resources and methodologies that could solve the problem 

previously described, this fact was commonly treated by making transformations in the response variable and using simpler 

models such as the linear and polynomial regression models, but in these cases does not provide a satisfactory fit, leading to 

mistaken conclusions because the characteristics already mentioned are present in the data set and are not being captured by 

the adopted methodology.  

Considering the model defined in (2), it was noted that it is not useful to describe the trajectories of the weights of the 

specimens containing the mortars, since it is assumed that the trend over time assumes a linear behavior, which in practice does 

not occur. In order to describe the trajectories over time respecting their specificities, bypassing the problems found previously, 

Durbán et al. (2005) describes that when using the P-splines smooth functions through the representation of mixed models, 

these instead of assuming that the trend over time is linear, assume smooth curves that only differ in their intercepts. Therefore, 

the model defined in (3) was adjusted but, it was noted that even considering the smoothed curves, it was still not possible to 

describe the individual trajectories.  

So, the model (4) is seen as a candidate for such a situation, since this brings as a characteristic the incorporation of a 

function g(.) nonparametric smooth, however, when including the interaction between treatments with the continuous predictor 

in this model, it is possible to describe the trajectories of the evolution of the weight of the types of mortar after the absorption 
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of water by capillarity over time considering the possible existence of heteroscedasticity. In view of what has been described, 

the model (5) describes these taking into account nonlinearity and the associated random effects. 

Figure 4, shows the fitted curves obtained from the model (5), considering 10 knots. It can be noted that the model fit 

was satisfactory in terms of interpolation, and yet, the specimens with matured mortar, added the contents, in a good part of the 

study admit a superior evolution in the speed of absorption of water by capillarity, being observed that in all the concentrations 

of contents, in average, the bodies- evidence did not reach the end of the study. It is also noted that when comparing the fitted 

model (5) with the fitted polynomial models, as used in Canova et al. (2009) and Canova et al. (2015), specifically quadratic 

polynomial models, we see how much more flexible the model (5) is in relation to the polynomial, since the usual models 

usually consider the mean of the observations while model (5) the individual effects of each individual, that is, the model 

brings potentialities in terms of fit in data of this nature.  

Regarding specimens of the type of dry mortar, in a good part of the study, they admit a lower evolution in terms of 

the water absorption speed by capillarity, being observed that in the concentrations of higher contents, specifically in the 

content of 8%, on average, the specimens reached the end of the study. Therefore, these findings corroborate with the analyzes 

presented in Canova et al. (2009) and Canova et al. (2015), in which these are associated with the fact that specimens with 

matured mortar in general admit higher weights compared to specimens with dry mortar. 

 

Figure 4: Fitted curves of individual subjects obtained from the model (5) and the fitted quadratic polynomial model by 

treatment. 

 

Source: Authors. 

 

Thus, to choose among the models considered, the Figure 5 the fitted values versus the Pearson residuals and in 

Figure 6 contains the weight of the specimens versus fitted values of Quadratic polynomial, (2), (3), (4) and (5) models, 

verifying in the Figures 5(e) and 6(e) that the model defined in (5) presents itself satisfactorily in relation to others.  
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Figure 5: (a), (b), (c), (d) and (e): Pearson residuals of the Quadratic polynomial, (2), (3), (4) and 

(5) models, respectively. 

      (a) 

 

    (b) 

 

         (c) 

 

     (d) 

 

         (e) 

 

Source: Authors. 

 

The Table 1 shows the results of the likelihood ratio test for the comparison between the fitted models, verifying that 

the model (5) presents itself satisfactorily in relation to the others, where this result is an approximation, as already described 

in Durbán et al. (2005) that suggest the use of simulation to determine the null distribution of the likelihood ratio test statistic. 

 

Table 1: AIC, BIC and the approximate likelihood radio test for the fitted models. 

Models AIC BIC Test L.Ratio p-value 

Quadratic polynomial 10334.27 10405.89 - - - 

Model 2 11329.58 11401.12 - - - 

Model 3 8903.22 8980.34 - - - 

Model 4 4746.77 4834.91 Model 3 vs Model 4 4160.45 <.0001 

Model 5 1618.90 1806.20 Model 4 vs Model 5 3163.86 <.0001 

Source: Authors. 
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Figure 6: (a), (b), (c), (d) and (e): Relationship between mortar weight data and fitted values of 

Quadratic polynomial, (2), (3), (4) and (5) models, respectively. 

(a) 

 

      (b) 

 

      (c) 

 

     (d) 

 

       (e) 

 

Source: Authors. 

 

4. Conclusion  

The most common mixed models for longitudinal data represent each individual as the sum of the population average 

(which varies over time). However, these models may not be appropriate, since they assume that individual trajectories over 

time have a linear pattern. Regarding the applicability of the models P-splines rewritten as mixed models in the analysis of 

longitudinal data, with regard to medical and biological areas, these have been shown to be quite flexible, highlighting some 

potentialities, such as making the linearity hypothesis flexible in many models and the possibility of including complex 

structures in the usual smooth models. Regarding correlated data, if a curve is adjusted independently of the correlation in the 

data, it is seen that the methods of selecting smooth parameters will determine a lower value and, therefore, the curve will not 

be smooth. As for the results of the statistical analysis, it was observed through smooth that there were significant differences 

in the trajectory of the weight evolution in both types of mortar, concluding that the matured type mortar has a water 

absorption speed by capillarity higher than the mortar of the kiln dried type, we still have that the necessary assumptions for 

the validation of the model have been satisfied. For that reason, this methodology proved to be satisfactory for modeling the 

data of this experiment, whose nature is longitudinal and oscillatory. 
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