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Abstract  

The objective of this work is to propose a predictive model of rockfall slope probability in rock slopes using the K-

Nearest Neighbors (KNN) method. A dataset composed by 220 rock slopes was used, whose variables are related to the 

presence of water, characteristics of the rock mass, degree of overhang, among others. For each slope of the dataset, 

rockfall probability (high, medium, or low) is known and determined by cluster analysis. The number of the nearest 

neighbors (k) ranged from 1 to 20. The obtained average accuracy of the tested predictive models was equal to 78.4%. 

The models produced satisfactory results in the prediction of the rockfall probability, since the area under the ROC 

curve was equal to 0.80. The best model was selected based on the k value with the highest accuracy and the highest 

area under the ROC curve. The selected model had a k value equal to 7. 

Keywords: Rockfall; Machine learning; K-Nearest neighbors; Rock slope stability. 

 

Resumo  

O objetivo desse trabalho é propor um modelo de predição da probabilidade de queda de blocos em taludes rochosos 

utilizando o método K-Nearest Neighbors (KNN). Foi utilizado um banco de dados composto por 220 taludes rochosos, 

cujas variáveis estão relacionadas à presença de água, características do maciço rochoso, descalçamento de blocos, entre 

outras. Para cada talude do banco de dados, a probabilidade de queda de blocos (alta, média ou baixa) é conhecida e foi 

determinada através de análise de agrupamento. O número de vizinhos mais próximos (k) variou entre 1 e 20. A acurácia 

média obtida dos modelos de predição testados foi igual a 78,4%. Os modelos produziram resultados satisfatórios na 

previsão da probabilidade de queda de blocos, uma vez que a área sob a curva ROC foi igual a 0,80. O melhor modelo 

foi selecionado com base no valor de k com maior acurácia e maior área sob a curva ROC. O modelo selecionado teve 

um valor de k igual a 7. 

Palavras-chave: Queda de blocos; Aprendizado de máquina; K-Nearest Neighbors; Estabilidade de taludes em rocha. 

 

Resumen  

El objetivo de este trabajo es proponer un modelo de predicción de la probabilidad de caída de bloques en taludes 

rocosos utilizando el método K-Nearest Neighbors (KNN). Se utilizó una base de datos con 220 taludes rocosos, cuyas 

variables están relacionadas con la presencia de agua, características del macizo rocoso, la presencia de bloques sueltos 

en los taludes, entre otras. Para cada talud del conjunto de datos, se conoce la probabilidad de caída de rocas (alta, media 

o baja) y se determinó a través del análisis de conglomerados. El número de vecinos más cercanos (k) se varió entre 1 

y 20. La precisión promedio obtenida de los modelos de predicción probados fue igual a 78,4%. Los modelos arrojaron 

resultados satisfactorios en la predicción de la probabilidad de caída de rocas, ya que el área bajo la curva ROC fue 

igual a 0,80. El mejor modelo se seleccionó en función del valor k con mayor precisión y el área más alta bajo la curva 

ROC. El modelo seleccionado fue el que tenía un valor de k igual a 7. 

Palabras clave: Caída de rocas; Aprendizaje automático; K-Nearest Neighbors; Estabilidad de taludes de roca. 

 

1. Introduction  

Machine learning and multivariate statistics are widely used by researches of several areas of knowledge, especially 

http://dx.doi.org/10.33448/rsd-v11i10.32603
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those with the aim of finding dataset patterns. The identification of these patterns provides the possibility of predicting the 

behavior of new individuals in the model.   

Mascarenhas et al. (2020) applied machine learning algorithms to propose an automatic classification system of 

Specialized Knowledge of Physics Teachers based on a pre-classified database. Ossani et al. (2020) carried out unsupervised 

classification learning techniques to find clustering patterns of specialty coffees and compared the obtained clusters with the 

original ones. Subsequently, Ossani et al. (2021) used supervised machine learning techniques to classify specialty coffees and 

they compared the performance of each used technique. Silva et al. (2021) used artificial neural networks and linear regression 

to build a tool for predicting the spatio-temporal distribution of viruses transmitted by Aedes aegypti. Fernandes et al. (2021) 

compared different artificial neural networks architectures to evaluate their behavior into predicting charges in an electrical 

system. Pessoa et al. (2021) used artificial neural networks to predict the load capacity of foundation. 

In geotechnical engineering, there are worldwide methodologies for rock mass classification and excavation stability 

analysis, such as Rock Mass Rating (RMR) (Bieniawski, 1989), Q-System (Barton et al., 1974), Slope Mass Rating (SMR) 

(Romana, 1985), Q-Slope (Bar & Barton, 2017). However, assessment models and systems of rock mass classifications have 

often a high degree of uncertainty and subjectivity, since they are based only on the field survey experience and general empirical 

rules. 

Taking into account the successful application of machine learning and multivariate statistical techniques to create 

prediction models, Santos et al. (2021) applied these techniques to predict the class of a rock mass according to a modified Rock 

Mass Rating (RMR). In the model, only the relevant variables were considered, since they were determined through multivariate 

factor analysis, which reduces the subjectivity inherent to rock mass classification problems. 

Subsequently, Santos et al. (2022) compared machine learning techniques to make predictions of classes in rock mass 

using the same dataset of Santos et al. (2021). Regarding the use of multivariate statistical techniques and machine learning for 

rock slope stability analysis, Santos et al. (2019) and Naghadehi et al. (2013) proposed models to predict the stability condition 

classification of rock mine slopes. 

Rockfall is a complex slope mass movement, difficult to predict. A trigger is not always necessary for a rockfall 

movement, differently from soil failures, which have in the precipitation an example of a common trigger. In this context, 

monitoring of geological risk areas is common in periods of high precipitation. It does not always occur in relation to rockfalls, 

which can result in catastrophic events in urban areas, highways and mining. 

Some methodologies were developed in order to assess rockfall hazard, such as Rockfall Hazard Rating System (RHRS) 

(Pierson & Van Vickle, 1993) and Colorado Rockfall Hazard Rating System (CRHRS) (Santi et al., 2009). These methodologies 

were proposed for highway slopes; but they are not able to predict rockfall probability. These methods rank the evaluated slopes 

in more hazardous and less hazardous, according to the sum of the scores attributed to the variables related to rock mass and 

traffic conditions.  They have the goal of determining the slopes where the intervention is more urgent.  

Therefore, methodologies capable of predicting rockfall probability are needed to solve the aforementioned problems. 

However, because of the uncertainties inherent in field surveys and rockfall movements, these methodologies must be optimized, 

as accurate as possible, and must be able to quantify the errors of prediction. The objective of this research is to propose a 

classification model of rockfall probability through K-Nearest Neighbors (KNN). The number of nearest neighbors (k) was 

varied and the best classification model to predict the class of any rock slope was proposed. A dataset with 220 slopes was used, 

whose rockfall probability classification (high, medium and low) was determined through cluster analysis, which is an 

unsupervised multivariate statistical technique. 
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1.1 Cluster Analysis  

Cluster Analysis is an unsupervised multivariate statistical technique used to group individuals in homogeneous clusters 

without any prior labeling of individuals. Among the various clustering techniques presented in the literature, an example is the 

non-hierarchical method Kmedoids (Kaufman & Rousseeuw, 1990). Partitioning Around Medoids algorithm (PAM) can be used 

to perform cluster analysis through kmedoids method.  

According to Kassambara (2017), the steps of the PAM algorithm are:  

1st - the algorithm randomly selects k individuals to become the medoids. The medoid is the representative individual 

of each group, so the number of groups is equal to k; 

2nd - the dissimilarity matrix is calculated and every individual in the dataset is assigned to a cluster, according to the 

distance between it and the medoid; 

3rd - if any individual in any cluster is able to reduce the dissimilarity coefficient, this individual becomes the new 

medoid of this cluster and the algorithm repeats the steps mentioned above. If not, the algorithm ends. 

 Dissimilarity matrix can be computed using any statistical distance, like Euclidean distance and the Manhattan distance. 

Manhattan distance may be applied when the database contains outliers. 

 

1.2 K-Nearest Neighbors 

K-Nearest Neighbors (KNN) is a supervised machine learning technique used to predict the class of an individual 

according to the similarities between this individual and the individuals pre-classified in specific classes. A way to evaluate the 

similarity between individuals is through the statistical distance measures. An individual will be classified in a class where the 

distances between it and a k number of the nearest neighbors (labeled individuals) are the smallest. This distance measure can 

be the Euclidean distance, Minkowski distance or the Mahalanobis distance (Kubat, 2017).  

The steps of the algorithm to establish the class of a new individual are:  

1st - the distances between the individuals are calculated;  

2nd - the labeled individuals closer to the new individual are found; 

3rd - the new individual is classified according to the class of the most k nearest neighbors (k labeled individuals with 

the shortest distances). 

The number of the near neighbors whose distances will be evaluated, the number k, must be provided. If k is equal to 

1, the individual will automatically be classified in the class where its nearest neighbor is allocated. If k is equal to 3, the distance 

between the new individual and its three closest neighbors will be evaluated and the new individual is classified according to the 

class of the k nearest neighbors. In Figure 1, when k is equal to 1, the new individual is classified in Class B; when k is equal to 

3, the individual is classified in Class A.  
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Figure 1 - Classification of an individual through KNN. 

 

Source: Authors. 

 

To obtain the best value for k, tests of models varying the value of k must be done. The optimal k is related to the model 

with the best validation metrics, such as the apparent error (Equation 1) and the accuracy of the model (Equation 2). Another 

important and widely used metric to evaluate the performance of the model is the area under the ROC curve (AUC). An AUC 

equal to 1 represents a perfect model, without errors. Therefore, the closer the AUC is to 1, the better the model. 

 

𝐴𝑝𝑎𝑟𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 =  
𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
          (1) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
           (2) 

 

2. Methodology  

2.1 Softwares and repositories  

Both KNN and cluster analysis were performed using freeware R version 4.0.2 (R Core Team, 2020). Methodology 

scripts are available on the GitHub platform:  

https://github.com/larissarcs/Prediction-of-rockfall-probability-using-KNN/blob/main/KNN 

https://github.com/larissarcs/PAM_cluster_Likelihood/blob/main/PAM_cluster_Likelihood. 

 

2.2 Dataset  

The dataset used in this research is part of the dataset used by Santi et al. (2009) to generate CRHRS. It is composed of 

220 rock slopes and the variables were surveyed in highway slopes of Colorado (USA). Although the database refers to highway 

slopes in the state of Colorado, all the variables and characteristics considered in this study could be easily surveyed on rock 

slopes located in any place of the world. These parameters are traditionally used in rock mass classifications and slope stability 

analysis, and some of the variables included in this research are evaluated in a similar way in classification methodologies, 

already established in geotechnical engineering practice, such as the RMR (Bieniawski, 1989). 

All variables related to the rock mass in CRHRS method were considered in this study; except the number of 

discontinuity sets and the weathering degree of the intact rock. The number of sets does not vary in the dataset used to propose 

the model. Weathering degree of the intact rock was not considered, as rockfalls occur even if the intact rock is fresh. Weathering 

degree and infilling of the joints were considered. Table 1 shows the eight independent variables (P1 to P8) used in the proposed 

model, where each variable received scores ranging from 1 to 4, according to its characteristics (1 represents a safe condition 

and 4 a critical condition). 
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Table 1 - Independent variables. 

 Characteristics/scores 

VARIABLES 1 2 3 4 

Water condition (P1) Dry Dump/wet Dripping Running water 

Rock character 

(P2) 

Homogeneous/ 

massive 

Small faults/strong 

veins 

Schist/ 

shear zones < 15 cm 

Weak pegmatite/micas/ 

shear zones >15 cm 

Degree of overhang  (P3) 0 to 0.3 m 0.3 to 0.6 m 0.6 to 1.2 m > 1.2 m 

Block size/ 

volume (P4) 

<0.3m/ 

<0.75m³ 

0.3 to 0.6m/ 

0.75 to 2.3m³ 

0.6 to 1.5m/ 

2.3 to 7.6m³ 

> 1.5m/ 

> 7.6m³ 

Discontinuities: Persistence and 

orientation (P5) 

< 3m and dips into 

slope 
> 3m dips to slope 

< 3m and daylights out 

of the slope 

> 3m and daylights out of 

the slope 

Discontinuities: Aperture (P6) 0 0.1 to 1 mm 1 to 5 mm > 5mm 

Discontinuities: Weathering 

condition (P7) 
Fresh Surface staining Granular infilling Clay infilling 

Discontinuities: Friction (P8) Rough Undulating Planar Slickenside 

Source: Adapted from Santi et al. (2009). 

 

As KNN is a supervised machine learning technique, the status or dependent variable must be known. The dependent 

variable was determined by cluster analysis. The obtained clusters were labeled and each group was classified as high, medium 

and low rockfall probability. Non-hierarchical method kmedoid was used. Cluster analysis was carried out through PAM 

algorithm, using factoextra package (Kassambara & Mundt, 2020) from R software (R Core Team, 2020). 

Cluster analysis grouped the dataset into three clusters based on the sum of scores assigned to variables. As there are 

eight variables and the score ranges from 1 to 4, the minimum possible final score is 8, representing a safe slope, with low 

rockfall probability. The maximum possible score is 32, representing an unsafe slope, with high rockfall probability. Table 2 

presents the range of the scores for each class, used to classify the 220 slopes of the dataset. Table 3 presents a part of the dataset 

with scores ranging from 1 to 4, assigned to the independent variables and the dependent variable, obtained through kmedoid. 

 

Table 2 - Classification criteria from cluster analysis. 

Probability class Sum of the scores  

Low 8 - 16 

Medium/Transition Zone 17 - 20 

High 21 - 32 

Source: Authors. 
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Table 3 - First six slopes of the dataset. 

P1 P2 P3 P4 P5 P6 P7 P8 Status 

2 3 3 3 2 4 3 1 high 

3 4 3 3 4 4 3 1 high 

3 3 2 2 4 3 3 2 high 

2 3 4 3 2 4 3 1 high 

1 3 3 2 2 4 3 1 medium 

1 3 3 2 2 4 3 1 medium 

Source: Authors. 

 

2.3 Applied methodology  

The developed methodology is summarized in the flowchart shown in Figure 2. The explanation of each step 

summarized in the flowchart appears next. 

 

Figure 2 - Methodology Flowchart for rockfall probability model. 

 

Source: Authors. 

 

Before applying machine learning techniques, standardization of variables must be applied to solve scale problems, 

especially when the variables have different measurement units or large differences in their magnitude (Kubat, 2017). As the 

dataset used in this work is ordinal and all variables can only receive integer values between 1 and 4, this problem does not 

occur. However, according to Laurence (1992), for the application of artificial neural networks (ANN) and other machine 

learning techniques in ordinal data, it is convenient to convert the data to a percentile to keep the value below 1. Therefore, the 

dataset was normalized on a scale between 0 and 1. Table 4 shows part of the dataset already pre-processed, ready for application 

of the technique. 
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Table 4 - Part of the dataset already prepared for the application of KNN (P1 to P8 represent the independent variables and 

Status represents the dependent variable or class). 

P1 P2 P3 P4 P5 P6 P7 P8 Status 

0.33 0.67 0.67 0.67 0.33 1.00 0.67 0.00 high 

0.67 1.00 0.67 0.67 1.00 1.00 0.67 0.00 high 

0.67 0.67 0.33 0.33 1.00 0.67 0.67 0.33 high 

0.33 0.67 1.00 0.67 0.33 1.00 0.67 0.00 high 

0.00 0.67 0.67 0.33 0.33 1.00 0.67 0.00 medium 

0.00 0.67 0.67 0.33 0.33 1.00 0.67 0.00 medium 

Source: Authors. 

 

In order to validate the proposed rockfall probability model, a randomly subsampling of the dataset was carried out. The 

220 samples were randomly divided into 70% for training and 30% for test to validate the model. 

To apply KNN algorithm, class package from R software was used (Venables & Ripley, 2002; R Core Team, 2020). 

To use KNN algorithm, the k number of neighbors must be predetermined. K was varied between 1 and 20, and the model with 

best metrics (apparent error, accuracy and AUC) was chosen. The performance was evaluated in training and test samples, in 

order to find models with overfitting and choose the most suitable model to predict rockfall probability.  

After the choice of the most suitable rockfall probability model, it was applied to two new slopes in order to determine 

their rockfall probability. These two slopes are located in a quartzite mine in São Thomé das Letras city, Minas Gerais State 

(Brazil). 

 

3. Results and Discussion  

3.1. Determination of the best (suitable) model 

Figure 3 presents a graph with the error rate of the test sample, considering the variation of k between 1 and 20.  

 

Figure 3 - Apparent error for each value of k, considering the test sample.  

 

Source: Authors. 

 

Each point in Figure 3 represents the value of the obtained apparent error; upper and lower dashed horizontal lines 

represent, respectively, the largest and the smallest error; vertical lines indicate the k value referring to the smallest errors. 
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The lowest error rate (16.7%) refers to k values equal to 1, 3 and 7, see Figure 3. 11 slopes of the total of 66 (test sample 

is 30% of the dataset) were incorrectly classified. The highest error rate was equal to 30.3%, when the k value was equal to 19. 

It is important to emphasize that a value of k equal to 1 is not statistically significant, because the algorithm will force the 

classification of the individual in the class where its nearest neighbor is allocated. The algorithm uses only one sample to classify 

the individual. According to Kubat (2017), KNN classifier’s performance should improve for k > 1, because the effect of the 

noisy nearest neighbors may be eliminated.  

Depending on the number of neighbors selected, overfitting can occur. Overfitting occurs when the error rate of the test 

sample is high and the error rate of the training sample is low. Thus, the error rates of the test and training sample were evaluated 

in order to evaluate if there is overfitting. The error values obtained through KNN application in the test and training sample are 

presented in Figure 4.   

 

Figure 4 - Apparent error for each value of k in the test and training samples. 

 

Source: Authors. 

 

Overfitting was not observed for k between 2 and 15. For k values between 16 and 20, the error rate in the test sample 

increases (Figure 4). In case of k equal to 3 and 7, the error rates of the test and training samples were small and close. Training 

samples presented an error rate equal to 11% for k equal to 3 and 12.3% for k equal to 7. Thus, considering error rate evaluation, 

both the model with k equal to 3 and the model with k equal to 7 are suitable, as they present acceptable and close error rates in 

the training and test samples, with an accuracy of 83.3 % in the test sample. In the model for k equal to 7, the error rates in the 

training and test samples are closer than in the model for k equal to 3. 

The area under the ROC curve (AUC) was also analyzed in order to verify the most suitable/best model. Figure 5 shows 

the results for the AUC when KNN was applied to the test and training samples.  
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Figure 5 - Area under the ROC curve (AUC). 

 

Source: Authors. 

 

Observing the Figure 5, the model with the highest AUC, considering the test sample, was the model with k equal to 7 

(0.858). Therefore, considering the error rates, and the AUC values, the suitable/best model is the one whose number of neighbors 

is equal to 7. 

In general, the models obtained through KNN method to determining rockfall probability were satisfactory. Considering 

the test sample, the average error of the models was equal to 21.6% (78.4% of accuracy). For the training sample, the average 

error of the models was equal to 15% (85% of accuracy). The average AUC values for the test and training samples were 0.80 

and 0.86, respectively. Considering the uncertainties arising from geotechnical field surveys and the difficulty of predicting 

rockfall probability, the obtained prediction models for rockfall probability classes are quite satisfactory. 

 

3.2 Validation of rockfall probability classes 

After obtaining the best model (k equal to 7), the behavior of this model regarding its errors was verified, since an error 

of 16.7% is acceptable, but not negligible. Therefore, it is necessary to know the type of error of the model. Thus, slopes 

incorrectly classified by KNN model in the test samples were analyzed. Table 5 shows these slopes and their classifications. 
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Table 5. Analysis of the test sample errors. 

Sample Sum of 

scores 

Class predefined by cluster 

analysis 

Class defined by 

KNN 

Probability of sample belonging to class defined by 

KNN 

28 21 High Medium 0.63 

40 21 High Medium 0.50 

76 22 High Medium 0.57 

78 21 High Medium 0.71 

82 20 Medium High 0.67 

91 17 Medium Low 0.50 

166 21 High Medium 0.71 

180 17 Medium Low 0.67 

181 17 Medium Low 0.67 

182 17 Medium Low 0.67 

211 17 Medium Low 1.00 

Source: Authors. 

 

All incorrect classifications obtained through KNN model are related to the transition zone (medium probability). In 

addition, the probability of the sample belonging to the class determined by KNN model is smaller than 70% in 8 samples. 

Therefore, the KNN confirms that there are uncertainties regarding classification of slopes whose sum of scores is ranging from 

17 to 21 and its borderline zone.  

Among the eleven slopes in Table 5, the classification provided by KNN model was less conservative than the 

classification proposed in Table 2 in ten of them, i.e., medium probability rockfall was classified by KNN as low probability 

rockfall; high probability rockfall was classified as medium probability. This type of error means underestimating the rockfall 

probability, so that slopes with need of intervention or monitoring could not receive the proper treatment. 

Despite the errors shown in Table 5, the KNN model can be considered adequate, as an error of 16.7% calls the attention 

for the uncertainties of the variables, which were scored according to a situation observed at the field or a range of values. Their 

values are associated with a description of a situation that better represents the rock mass behavior, in the point of view of the 

geologist or the engineer. 

 

3.3 Determination of the rockfall probability for 2 new slopes 

After validating the optimal model with k equal to 7 and understanding the type of classification errors of KNN in 

rockfall probability, the model was used to classify two new slopes whose probability classes were unknown. These slopes are 

located in a quartzite mine in São Thomé das Letras city, Minas Gerais State (Brazil).  

The slope 1 (Figure 6a) is composed of a homogeneous fresh quartzite. There is one set of discontinuity (the quartzite 

foliation), whose persistence is higher than 3m and the spacing varies between 3cm and 20cm, being the smallest spacing 

predominant. The aperture is in the 0.1mm to 1mm range, with granular infilling. The foliation is practically perpendicular to 

the slope face, with an average orientation of 11/240. The slope face has an orientation equal to 86/206 (dip/dip direction) and 

the surface is regular, without overhangs; no evidence of rockfall or sliding was observed. Water dripping in the slope face and 

in the discontinuities was observed.   

The slope 2 (Figure 6b) is also composed of a homogeneous quartzite. There are three sets of discontinuities; one of 

them is the foliation (set 1). The foliation is practically perpendicular to the slope face, with an average orientation of 08/265. 

The set 2 is the more critical set, because it daylights out of the slope and can cause rock sliding; the average orientation is 
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64/120. The slope face has an orientation equal to 75/138 (dip/dip direction) and the surface is irregular, with a degree of 

overhang ranging from 0.6 to 1.2 m; evidences of rock sliding were observed (Figure 6c). The persistence of the discontinuities 

is higher than 3m. The spacing of the critical set varies between 20cm and 80cm and this set is planar. Discontinuities with 

aperture higher than 1cm, with granular infilling were observed. The slope was dry during the field surveys and operations were 

paralyzed on this front, due to evidence of rockfall hazard. Table 6 presents the scores of the variables P1 to P8 for each slope, 

according to the described characteristics. 

 

Figure 6 - Slopes 1 and 2 and rock sliding evidences in slope 2. 

 

Source: Authors. 

 

Table 6 - Mine slopes scores. 

Slope 
Scores assigned to independent variables 

P1 P2 P3 P4 P5 P6 P7 P8 

1 3 1 1 1 2 2 3 3 

2 1 1 3 3 4 4 3 3 

Source: Authors. 

 

The sum of the scores of the Slope 1 is 16, thus according to Table 2, the expected rockfall probability is low. The sum 

of the scores of the Slope 2 is 22, so the expected rockfall probability is high. The predicted rockfall probability by KNN for 

Slope 1 is low and the probability of this slope belonging to the low class is 87.50 %.  The predicted rockfall probability by KNN 

for Slope 2 is high and the probability of this slope belonging to the high class is 77.80%. Thus, for these two slopes, the algorithm 

was able to make correct predictions, consistent with the observations in the field. 

 

4. Conclusion  

This article presented a complete assessment of the performance of the KNN for predicting the rockfall probability in 

rock slopes, through the analysis of error, accuracy and AUC for different values of k. The choice of the optimal model considered 

the error rates, overfitting trends and AUC; the suitable/best model is the one that presented the best metrics. 

http://dx.doi.org/10.33448/rsd-v11i10.32603
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The suitable/best model is the one whose number of neighbors is equal to 7. This model presented an apparent error of 

16.7%, accuracy of 83.3% and AUC of 0.858; the highest AUC among all the models tested. The average error rate considering 

all the tested models was 21.6% and the average AUC was 0.80, which shows that in general, KNN, a simple machine learning 

technique, presents good results in predicting rockfall probability in rock slopes. 

Analyzing the 11 slopes of the test sample incorrectly classified using the best KNN model; it was observed that all 

errors involved the medium class of rockfall probability. It was also possible to verify that in most of these cases, the KNN 

achieved a probability of less than 70% that these slopes belonged to the predicted class, proving that there is an uncertainty or 

transition zone in this type of analysis. As the classification errors were concentrated in the borderline zone of the classes, it can 

be considered that the trained KNN model is suitable to predict the rockfall probability.  

In view of the results presented and the efficiency of KNN to predict the rockfall probability, it is suggested that the 

research continues through more robust machine learning techniques, such as Artificial Neural Networks, Decision Trees and 

Random Forest, in order to compare the results with KNN and understand which variables have the greatest impact on the results 

and which have little impact. 
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