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Resumo 

O trabalho propõe uma metodologia para o desenvolvimento de monitoramento da 

integridade estrutural baseado em técnicas de computação inteligente, com propósito de 

detectar falhas estruturais em um rotor utilizando a técnica de sistemas imunológicos 

artificiais com seleção negativa e seleção clonal. Este conceito permite compor o sistema de 

diagnóstico apto a aprender continuamente, contemplando duas situações de danos, sem a 

necessidade de reiniciar o processo de aprendizado. Neste cenário, foi empregado dois 

algoritmos imunológicos artificiais, sendo o algoritmo de seleção negativa, responsável pelo 

processo de reconhecimento de padrões, e o algoritmo de seleção clonal responsável pelo 

processo de aprendizado continuado. Para avaliar a metodologia foi montada uma bancada 

experimental que produz um sinal de vibração, a partir do qual capturado e tratado, pode ser 
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identificado, classificado e até definido o prognóstico do comportamento do teste. Os 

resultados demonstram robustez e precisão da metodologia proposta. 

Palavras-chave: Monitoramento de integridade estrutural; Rotor; Sistemas imunológicos 

artificiais; Algoritmo de seleção negativa; Algoritmo de seleção clonal. 

 

Abstract 

The work proposes a methodology for the development of structural integrity monitoring 

based on intelligent computation techniques, with the purpose of detecting structural faults in 

a rotor using the technique of artificial negative and clonal selection immune systems. The 

method makes it possible to compose the diagnostic system able to learn continuously, 

covering two situations of damage, without the need to restart the learning process. The 

negative selection algorithm is responsible for the pattern recognition process and the clonal 

selection algorithm is responsible for the continuous learning process. To evaluate the 

methodology, an experimental bench was set up that produces a signal which, from which 

captured and treated, can be identified, classified and even defined the prognosis of the test 

behavior. The results demonstrate robustness and precision of the proposed methodology. 

Keywords: Structural integrity monitoring; Rotor; Artificial immune systems; Negative 

selection algorithm; Clonal selection algorithm. 

 

Resumen 

El trabajo propone una metodología para el desarrollo de monitoreo de integridad estructural 

basada en técnicas informáticas inteligentes, con el propósito de detectar fallas estructurales 

en un rotor utilizando la técnica de sistemas inmunes artificiales con selección negativa y 

selección clonal. Este concepto permite componer el sistema de diagnóstico capaz de 

aprendizaje continuo, contemplando dos situaciones de daño, sin la necesidad de reiniciar el 

proceso de aprendizaje. En este escenario, se utilizaron dos algoritmos inmunológicos 

artificiales, el algoritmo de selección negativa responsable del proceso de reconocimiento de 

patrones y el algoritmo de selección clonal responsable del proceso de aprendizaje continuo. 

Para evaluar la metodología, se estableció un banco experimental que produce una señal de 

vibración, a partir de la cual se puede capturar y tratar, se puede identificar, clasificar e 

incluso definir el pronóstico del comportamiento de la prueba. Los resultados demuestran 

robustez y precisión de la metodología propuesta. 

Palabras clave: Monitoreo de integridad estructural; Rotor; Sistemas inmunes artificiales; 

Algoritmo de selección negativa; Algoritmo de selección clonal. 
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1. Introduction 

Manufacturing systems are currently considered the main generators of wealth, which are 

referentially based on the growth of an economy. The term intelligent manufacturing (IM) is 

the result of changes in science and technology, the needs of global manufacturing, and the 

relationship of the environment. Thus, in a way, revolutions can be classified as: the age of 

manual skills; the age of machines and rigid automation; the information age and flexible 

automation; and the age of knowledge and intelligent automation (ZHOU; WANG; LOU, 

2010). 

Maintenance prevention is applied to production systems in order to keep machines 

running, reducing operating failures (Werbinska-Wojciechowska, 2019) and the monitoring 

of the condition of a machine is done by integrated systems and analysis of high adjustable 

signals, identifying the characteristics of changes (WANG; GAO, 2006). 

Structural Health Monitoring (SHM) of detecting early state failures, intervening in 

propagation, and preventing structural stalling or damage (HALL, 1999). SHM is a process 

that, in its current phase, seeks to move from controlled laboratory testing to practical 

applications, providing an estimate of the remaining life of the damaged system or equipment. 

The SHM is based on factors such as predictive models, experimental and operational 

conditions, among others. 

Monitoring systems are divided into separate steps, which include detecting and locating 

damage to the structure, identifying the type of damage, assessing the extent of damage, and 

identifying the remaining life of the structure. The SHM increases safety and reduces 

maintenance costs. SHM systems are designed to reliably monitor and test the integrity and 

performance of structures (FARRAR; LIEVEN; BEMENT, 2005). 

The technique for monitoring a structure depends on the constructive configuration, the 

experimentation environment and the type of structure, which can be based on several non-

destructive techniques called NDE. These include magnetic particle inspection, Eddy 

currents, strain analysis, fiber optic techniques, acoustic emissions, comparative vacuum, x-

rays, penetrating liquids, wave propagation (Lamb waves), vibration and electromechanical 

impedance (GONSALEZ et al., 2012). 
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The present research presents a methodology for the development of SHM based on 

intelligent computing techniques, aiming to detect and locate structural faults in a rotor, using 

the technique of artificial immune systems, such as negative selection and clonal selection 

algorithm. 

Negative Selection (NSA) and Clonal Selection (CLONALG) Algorithms are justified due 

to the pattern recognition and continuing learning characteristics, and to perform well in other 

pattern recognition and diagnostic problems (LIMA et al., 2016) and (OLIVEIRA; 

CHAVARETTE; LOPES, 2019). 

The negative selections and clonal selection algorithms showed good results and to perform 

well in other pattern recognition and diagnostic problems. 

 

1.1 The negative selection algorithm 

The NSA presents characteristics which make it different from other intrusion approaches, 

such as: enables to adjust the detection rate, defining the number of detectors generated, each 

detector can detect abnormalities independently; the detection is local; the detector defined in 

each location can be unique and the auto adjustment and set of detectors are mutually 

protectors (JUNGWON et al., 2007). 

The NSA is carried out in two phases: censoring and monitoring as described by (DE 

CASTRO; TIMMIS, 2003) and (LIMA et al., 2013).   

In the censoring phase of the NSA, the self detectors are defined, which represent the 

normal condition of the organism, known as self chains, aiming to generate a set of detector 

patterns which can identify the nonself pattern in the monitoring phase of the NSA. Once the 

data are read, random chains are chosen and the affinity is evaluated between them and the set 

of self chains, based on comparisons between them. If the affinity is higher than a threshold 

that is defined previously, such chain is rejected. Otherwise, this chain is accepted into the 

detector set and used in the classification process during the data monitoring. The detectors 

can detect any nonself element, a modification or error present in the data that are intended to 

be monitored (BRADLEY; TYRREL, 2002). 

In the monitoring phase, the data are monitored with the purpose of identifying changes in 

the behavior of the dataset and classifying such changes using the detector set created during 

the censoring phase. The protected chains are compared to the detector set and the affinity is 
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evaluated. If the affinity between the chains is higher than a previously defined threshold, the 

nonself element is identified and classified (DE CASTRO; TIMMIS, 2003). 

The censoring phase of the negative selection algorithm are illustrated in Figures 1 defined 

by (DE CASTRO; TIMMIS, 2003) and (LIMA et al., 2013).   

Figure 1 – Flowchart of the censoring phase of the NSA.  

 

Source: Adapted from Lima (2016). 

 

In the censoring phase, the proper chains that will be used in the monitoring phase are 

defined. 

The monitoring phase of the negative selection algorithm are illustrated in Figures 2 

defined by (DE CASTRO; TIMMIS, 2003) and (LIMA et al., 2013).   

 

Figure 2 – Flowchart of the monitoring phase of the NSA. 

 

Source: Adapted from Lima (2016). 

 

In the monitoring phase, the detectors are identified on their self and their nonself. 
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The chains in the NSA can be classified in two types: antigens (Ag) and lymphocytes 

(Ab). Ag is the signal to be analyzed or unknown by the NSA, and can be represented by 

equation 1. The detectors, or lymphocytes (Ab), can be expressed according to equation 2, 

defined by (DE CASTRO; TIMMIS, 2003) and (BRADLEY; TYRREL, 2002).     

LAgAgAgAgAgAg ,...,,,, 4321  (1) 

LAbAbAbAbAbAb ,...,,,, 4321  (2) 

 Where: L is the dimension of the space of the lymphocytes (Ab) and the antigens 

(Ag). 

It is important to highlight that the censoring and monitoring phases of the NSA are 

carried out offline and online, respectively (DE CASTRO; TIMMIS, 2003). 

 

1.1. 1 Matching criterion and match ratio  

To evaluate and verify the affinity between the chains (self and nonself), as well as to check 

whether they are similar, a criterion known as match criterion is used. The match can be 

perfect or partial. The match is considered perfect when two chains analyzed are the same. In 

this work, the concept of partial match was used, and only a certain number of positions 

between the patterns must present similar values to confirm a match. This number is defined 

as affinity rate (BRADLEY; TYRREL, 2002). 

The affinity rate (TAf) represents the necessary degree of similarity for a match between 

two chains under analysis to occur. The affinity rate is defined by equation 3: 

100*









At

An
TAf  (3) 

Where:  

TAf  : affinity rate; 

An  : number of normal strings in problem (own strings); 

At  : total number of strings in the problem (own and non-own chains). 

In the model proposed by (Lima et al., 2013) there is a deviation linked to the plus and 

minus tolerant detector pattern, which can be combined with the standards. This deviation 
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acts individually at each position i of the vector, allowing to evaluate the marriage point by 

point, as shown in equation 4. 

iii AbAgAb   (4) 

Where:  

iAg  : nominal value of antigen position i (standard under analysis);  

iAb  : nominal value of position i minus antibody deviation (detector default); 

iAb  : nominal value of position i plus the deviation adopted in the antibody (detector 

standard). 

If the value at the position i of the vector is within the range expressed in the equation, a 

match can be considered for such position, and it is possible to quantify such match between 

the patterns analyzing each position. The measure of total affinity used to evaluate the 

patterns under analysis is expressed by equation 5, as proposed by (BRADLEY; TYRREL, 

2002). 

100*1

L

Pc

Af

L

i

T


  (5) 

Where:  

TAf  :  % of match between the patterns analyzed;  

L     : total number of positions;  

Pc   : position where match occurred; 




L

i

Pc
1

 : sum (number) of position where match occurred. 

When TAf is greater than or equal to TAf occurs the marriage, and are considered similar, 

that is, it is classified as a normal condition of the structure, as it presents characteristics of 

the set of its own detectors. If TAf  is smaller than TAf  the detector does not recognize the 

pattern, therefore there is no match between the signals, therefore, as a structural damage.  

 



Research, Society and Development, v. 9, n. 7, e96973546, 2020 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v9i7.3546 

8 

1.2 Clonal Selection (clonalg) 

In the CLONALG two characteristics principle are considered: (1) maturation and (2) 

selection proportional to the affinity. There are two versions of such algorithm in the 

literature: the first one for problems involving pattern recognition, and the second one for 

optimization problems (DE CASTRO; TIMMIS, 2002). 

The CLONALG algorithm can be described according to the steps presented below (DE 

CASTRO; TIMMIS, 2002):  

Step I: Initialization: randomly generate a population (Ab=AbM+ AbR) with n lymphocytes 

for each antigen (Agi). N is given by M+R; 

Step II: Affinity evaluation: each antigen (Agi) is presented to the lymphocytes of the 

population (Ab) in the process of affinity evaluation. An affinity vector f is determined; 

Step III: Selection: the n lymphocytes with the highest values of affinity f in relation to 

(Agi) are selected to compose the subpopulation (Abn); 

Step IV: Cloning: the n lymphocytes selected (cloning) proliferate proportionally to the 

affinities of the antigen (Agi), generating a population C of clones. The higher the affinity f is, 

the higher the number of selected lymphocytes n is; 

Step V: Hypermutation: afterwards, the population C of clones is subjected to a process of 

affinity maturation, generating a new population C*, where each lymphocyte undergoes 

mutation at a rate that is inversely proportional to the affinity f; 

Step VI: Affinity evaluation: determine the affinity f* between the mutated set C* of 

clones and the antigen (Agi); 

Step VII: Re-selection: from the mature population C*, re-select the n best maturated 

lymphocytes composing the subpopulation (Abn). From this subpopulation, the best 

lymphocytes are selected to compose the memory set (AbM). The lymphocyte composes the 

memory set when it presents high affinity rates, and may replace a memory lymphocyte; 

Step VIII: Metadynamics: replace d antibodies of (AbR) for (Abd) new individuals, thus 

inducing diversity in the repertoire. The antibodies with the lowest affinities are selected to be 

replaced; 
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Step IX: Repeat steps II through VIII until a stopping criterion is met. 

At the end of the iterative process, the memory set (AbM) presents M lymphocytes with 

high affinity rates in relation to the antigen (Agi). This memory set is used by the NSA for 

detecting and classifying the antigen that was learned in the process of CLONALG. 

The number Nc of clones generated in Step IV for each lymphocyte i is given by 

equation 6 (DE CASTRO; TIMMIS, 2002): 

 

)/( iBNroundNic   (6) 

Where:  

β : multiplying factor between [0,1];  

N  : total number of lymphocytes of the population Ab;  

round  : operator which rounds the value to its closest integer; 

The mutation rate (α) of each clone is defined by equation 7 (DE CASTRO; TIMMIS, 

2002): 

 

 

)exp( pfna   (7) 

Where:  

p : control parameter of the decay of the exponential function;  

fn : normalized value of the affinity f;  

The normalized value of the affinity f can be calculated as presented by equation 8: 

max)/( fffn   (8) 

Where: 

f : affinity value;  
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fmax    : maximum affinity value;  

Therefore, each clone undergoes a mutation process given by equation 9: 

))1,0(*( Naroundm   (9) 

Where:  

m :  number of mutations;  

round  :  operator which rounds the value to its closest integer;  

α :  mutation rate;  

N :  random gaussian variable whose mean is equal to zero and standard deviation equal 

to one. 

 

2. Material and methods 

This research is experimental carried out with laboratory tests with qualitative character. 

The first concept of dynamic rotors was introduced by Jeffcott, H.H. in 1919, which 

consists of a solid shaft-mounted disc located equidistant between two bearing housings, 

which allows one to understand the behavior of the forces that unbalance this dynamic system 

(LEE, 1993). Basically, the movement of the rotor demonstrates two phenomena, the first 

being lateral displacement and the second the gyroscopic effect, both acting directly on the 

rotor axis (KRAMER, 1993) and (MUSZYNSKA, 2005). 

The experimental model of the dynamic rotor, used in this experiment, is composed of: 1 

electric motor for system activation; a frequency inverter that controls the shaft speed of the 

WEG CFW10 brand electric motor; two bearings P205 MITSU, two bearings GBR6205 

ZZC3. The movement of the mainshaft is done by coupling two pulleys connected by a belt, 

and the speed of the shafts is changed through the frequency inverter. Consider that the 

mainshaft is supported on two bearings with a fixed equidistant disk between them. Figure 3 

shows the experiment and its couplings between the axes. 

 

Figure 3 - Dynamic Rotor 
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Source: Adapted from Outa and Chavarette (2018). 

 The experiment can be verified according to the figure 3. The figure 4 shows the detail 

of the frequency inverter.  

Figure 4 - Frequency Inverter 

 

Source: Adapted from Outa and Chavarette (2018). 

The figure 5 shows the bearing and the rolling bearing. 

Figure 5 - Bearing Support and Bearing 

 

Source: Adapted from Outa and Chavarette (2018). 

The signal acquisition system consists of 1 MPU6050 3-axis accelerometer and one UNO 

arduino board. The way to collect the signal is made considering that the accelerometer is 

superimposed on one of the bearings and, with the electric motor running, given a certain 

frequency, the vibration signal is collected. Afterwards, the accelerometer is superimposed on 

the second bearing and the signal collection method is repeated, considering the same settings 
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as the first bearing. The dimensional technical specifications of the experiment are: shaft with 

mass of 0.5 kg; shaft stiffness of ; spindle length 128.0 mm; shaft diameter 

of 6.0 mm. Figure 6 shows the detail of the shaft supported on the bearings and the mass 

fixing disc. 

Figure 6 - Detail of the Experimental Dynamic Rotor. 

 

Source: Adapted from Outa and Chavarette (2018). 

The vibration data are composed of 256 samples for each vibration axis referenced at the 

position of the Cartesian coordinates x, y and z. Each vibration signal is composed of 256 

acceleration samples in the respective coordinates, the collection time of each signal was 120 

seconds. The assembly for collecting the signals in points 1 and 2, for the characterization of 

the system, were in the first phase between two new bearings; and in the second phase a new 

bearing and a bearing already used.  

Using the experimental configuration, the database was developed considering the 

acquisition of the signals varying the frequencies every 2Hz, starting at 4Hz and ending at 

60Hz. The signal every 2Hz, is composed of 400 displacement samples. The overall result of 

this step was a database with an array of 46x400 signals without failures. 

Using the experimental configuration, the mass  was introduced into the mass disk, 

causing the shaft to be unbalanced. The frequencies used in this condition were from 4Hz to 

14Hz, every 2Hz, with 10 signals picked up for each frequency. The limit up to 14Hz was 

specified maximum, due to the limitations of the experiment conditions. The assembled 

database resulted in an array of 60x400 faulty signals. 

The mass  was introduced into the mass disk, located at 60° from the  position, 

causing another type of shaft imbalance. The frequencies used in this condition were from 
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4Hz to 14Hz, every 2Hz, with 10 signals picked up for each frequency, the same frequencies 

used in the pickup with the mass . In this case the limit up to 14Hz was also specified 

maximum due to the limitations of the experiment conditions. The assembled database 

resulted in an array of 60x400 faulty signals. 

Note that, in general, two databases of the standard configuration were set up, where the 

first database is formed by a 46x400 matrix of good and faultless signals. In the second 

database, a matrix of 120x400 of signals with axis imbalance data of  and  was 

formed. 

The SHM system was composed of six main modules: data acquisition system, censoring 

module of the SHM, novelty detection module, continuous learning module, monitoring 

module of the NSA, and knowledge update module. 

Figure 7 depicts the use of the NSA for damage detection and location, and CLONALG for 

the continuous learning strategy. 

Figure 7 – Flowchart of the algorithm with continuous learning. 

 

Source: Adapted from (Lima et al., 2016). 

 

 

Data acquisition system: data were obtained through an experimental apparatus that 

produces a vibration signal which, from which captured and treated. 
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The data were used in the following modules: censoring of the NSA, novelty detection, 

continuous learning, monitoring of the NSA, and knowledge update. 

Censoring module of the NSA: the diagnosis system was carried out in two stages, online 

and offline. In the offline process, the initial learning of the system was carried out (training), 

which is called censoring module. In this process, the self detectors were defined, composing 

the detector set of the NSA. This set of self detectors is regarded as the knowledge of the 

intelligent system for decision-making during the online process. The set of own detectors 

were constituted of the matrix of 46x400 (good signals without fail), and the matrix of 

120x400 (signals with axis imbalance), these matrices were treated using the theory of digital 

analysis of signals, being 60 signals related to the damage 1 and 60 signs referring to damage 

2 thus forming a 120x400 matrix. In this context, the set of self detectors was generated by 

randomly choosing between normal signals and signals with non repeating damages in the 

dataset. The data were compared pointwise with the self detectors. If a match occurred, the 

random vector was rejected, because self characteristics were identified. Otherwise, it was 

accepted and then stored as a self detector into the self detectors set. 

Once the self detectors set was obtained, it was used in the stages of the diagnosis system, 

such as: novelty detection, continuous learning module, monitoring module of the NSA and 

knowledge update module. After carrying out the process offline, the monitoring process was 

carried out online. 

Novelty detection module: in the process of online monitoring of the system, the antigen 

set was obtained. This set was composed of the signals from the dataset. Afterwards, a signal 

was randomly chosen for analysis. This signal was then subjected to the novelty detection 

module. In the novelty detection stage, a comparison between the signal under analysis and 

the detector set of the NSA was performed. If a match occurred, such a signal was considered 

as already known by the system, that is, it was not a novelty. Otherwise, it was considered as 

a novelty, that is, unknown by the system. 

When the system identified a novelty, the continuous learning stage was activated with 

the purpose of learning about the new antigen (signal under analysis), which is characterized 

as the continuous learning process by the CLONALG algorithm. When the signal was known 

by the system, it was analyzed by the monitoring module of the NSA, which is described 

below. 
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Continuous learning module: the CLONALG algorithm aimed to generate a memory set 

(knowledge) from the unknown signal (antigen). Firstly, a population of lymphocytes was 

randomly generated. To quantify the affinity between the lymphocytes of the population (Ab) 

and the antigen, equation 3 was used. Afterwards, the N best lymphocytes with the highest 

affinity values in relation to the antigen were selected for the cloning and hypermutation 

processes. The number of clones was calculated by equation 6 and the number of mutations 

was determined by equations 7 and 9. The purpose of mutation was to perform slight 

modifications in the structure of the lymphocytes, thus increasing the affinity in relation to the 

antigen. 

In this methodology, as the signals analyzed were expressed as vectors with positive and 

negative real numbers, it was necessary to use an inductive technique (WYLIE; 

SHANKHNOVICH, 2012). Therefore, the mutation process used equation 10 or equation 11, 

at a position of the signal (lymphocyte) that was randomly chosen. 

 

 (10) 

 (11) 

 

After carrying out the maturation of the lymphocytes, the N best maturated clones were 

re-selected to be incorporated into the population again. The selected lymphocytes replaced 

the worst ones of the population. Afterwards, the best lymphocytes of the population were set 

aside for the memory set. The process was repeated until a stopping criterion was met. In this 

research, the stopping criterion was determined by the number of iterations. 

After completing the learning process, a memory set (knowledge) in relation to the 

unknown antigen was obtained. This knowledge set was incorporated into the detector set of 

the NSA, thus providing knowledge to the system, so that for future analyses that involve the 

same antigen the system is able to recognize and classify the damage. Such process was 

defined as continuous learning. 

Knowledge update module: after carrying out the continuous learning process and 

obtaining the memory set, the detector set of the NSA was updated. 
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Monitoring module of the NSA: when, in the novelty detection stage, a novelty was not 

identified, that is, the antigen was already known by the NSA and the signal under analysis 

was compared to the detector set of the NSA and both affinity and match were evaluated, it 

was possible to detect the signal containing damage and then classify it according to the two 

different damage situations. Afterwards, the monitoring process of the NSA was then 

completed. 

For the immune system algorithm to work well, considering continuous learning, some 

parameters of the NSA and CLONALG were used. After empirical tests, the parameters 

which presented the best performance for the system are listed in table 1.  

Table 1 - Parameters 

Parameters 

NSA without continued 

learning 
NSA with continued learning 

N - 20 

N - 4 

Β - 0.3 

D - 0 

Deviation 3% 3% 

Roh - 3 

Source:  Elaborated by the author. 

Table 1 represents the best parameters that were used in the CLONALG. 

The system was subjected to a testing and parameter settings phase, that is, a cross-

validation test, in which the system was executed 30 times to ensure accuracy in the results. 

 

3. Results and Discussions 

The proposed methodology was evaluated by assessing the efficiency, accuracy and 

robustness in the process of SHM using the conventional algorithm (without continuous 

learning) and the algorithm with continuous learning. 

With the purpose of assessing the performance of the modules of novelty detection, 

continuous learning and knowledge update in the algorithm proposed in this work, the 
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censoring phase in both systems (without and with continuous learning) was carried out 

excluding a pattern, damage 2 was chosen and so the algorithm started the online monitoring 

process without prior knowledge of the patterns, damage 2 was chosen and so the algorithm 

started the online monitoring process without prior knowledge of the patterns. 

After applying the NSA to the test set of the two damage situations, the results presented in 

Table 2 were obtained. 

Table 2 – Resultados do algoritmo convencional – 1 situação de dano e 1 sem dano 

Pattern 
Tested Pattern Correct Pattern 

Hits 

(%) 

Baseline 46 46 100,00 

Damage 1 60 60 100,00 

Damage 2 0 0 0 

Total 106 106 63,85 

Source:  Elaborated by the author. 

Based on table 2, the NSA could not identify the pattern that was excluded from the 

censoring process, that is, without a previous knowledge of the damage. 

Thus, the SHM was unable to identify damage 2, where there was no hit. It was observed 

that the SHM analysis system performed on a rotor presented good 100.00% hit rate, and that 

the detector quantities directly influence the damage recognition. 

Table 3 presents the results obtained by the SHM with continuous learning for the same 

condition as Table 2. 

 

 

 

 

Table 3 – Continuous Learning Algorithm Results - 1 damage and 1 no damage situation 



Research, Society and Development, v. 9, n. 7, e96973546, 2020 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v9i7.3546 

18 

Pattern 
Tested Pattern Correct Pattern 

Hits 

 (%) 

Baseline 46 46 100,00 

Damage 1 60 60 100,00 

Damage 2 60 60 100,00 

Total 166 166 100,00 

Source:  Elaborated by the author. 

Given the results from Table 3, it is possible to observe that the system with continuous 

learning was able to learn the unknown damage and, based on this, could diagnose the 

damage in the next analysis. 

It was also noted that the knowledge update module contributed to the NSA. This is 

because SHM updates the NSA detector set in the online monitoring process, providing 

enhanced and improved knowledge. 

Another test was performed excluding two patterns, and damages 1 and 2 were chosen and 

thus the algorithm started the online monitoring process without previous knowledge of the 

patterns. By applying the NSA to the test set, the results presented in Table 4 were obtained. 

Table 4 – Conventional algorithm results - 0 damage and 1 no damage situations 

Pattern 
Tested Pattern Correct Pattern 

Hits 

 (%) 

Baseline 46 46 100,00 

Damage 1 0 0 0 

Damage 2 0 0 0 

Total 46 46 27,70 

Source:  Elaborated by the author. 

 

Table 4 shows that the NSA failed to identify the patterns excluded from the censoring 

process, and without prior knowledge of the damage. Thus, the SHM was unable to identify 
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damage 1 and 2, where there were no hits. It was observed that the structural integrity 

analysis system performed on a rotor presented good 100.00% hit rate, and that the detector 

quantities directly influence the damage recognition. Table 5 presents the results obtained 

by SHM with continued learning in the same condition as Table 4. 

Table 5- Continuous Learning Algorithm Results - 0 damage and 1 no damage situations 

Pattern 
Tested Pattern Correct Pattern 

Hits 

 (%) 

Baseline 46 46 100,00 

Damage 1 60 60 100,00 

Damage 2 60 60 100,00 

Total 166 166 100,00 

Source:  Elaborated by the author. 

Comparing tables 4 and 5, it was observed that the conventional NSA did not recognize the 

patterns excluded from the censoring process, presenting 0% accuracy. Subsequently, the 

continuous learning system was used and the patterns were identified, with a 100.00% hit rate 

for the three distinct damage situations. 

 

4. Final considerations 

In this work it was possible to demonstrate that the algorithm developed to monitor 

structural integrity is able to detect and locate damage by analyzing vibration signals. Of 

damage detection was possible considering the fact that the concept of artificial negative 

selection and clonal selection immune systems was used. 

It was possible to prove in the NSA through the tests performed that the greater the 

knowledge obtained in the censoring module, the greater the efficiency in the recognition and 

classification process of the NSA in the monitoring module. Still, considering the tests 

performed, it was possible to demonstrate that the CLONALG has the ability to continue 

learning, because it learns the unknown damage, improving the results in a next analysis, and 

the cross-reference test, provides reliability and speed. 
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The knowledge update module has contributed to continued learning, so the hit rate has 

increased and this is due to the fact that in the system the NSA detector pool is updated in the 

online monitoring process, providing improvement and robustness in knowledge. 

It is observed that the NSA and CLONALG proposed in this work, based on intelligent 

computation techniques were efficient, reliable, robust and accurate in performing structural 

integrity monitoring. In this respect, the application of this algorithm can be done on 

industrial machines in general, contributing to cost reduction and productivity increase. 

As a future suggestion, another intelligent technique can be implemented and compared to 

continued learning. 
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