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Abstract  

Seeds pathogens compromise the production of beans. Seed treatment is used to mitigate the pathogens' incidence and 

damage; however, the forms of control must be efficient and safe. Our main hypothesis is that synthetic chemicals are 

the most efficient treatment against bean seed pathogens. Thus, we discuss the controls of pathogens in bean seeds 

using different treatments and identify the technologies studied for these purposes. This review assessed papers that 

used different strategies to control the bean seed pathogen. There are treatment classifications in which synthetic 

chemicals are the most efficient to control these pathogens, but as a burden, they pose a risk to human health, animals, 

and the environment. However, alternative, and complementary solutions to control these microorganisms have been 

sought in physical, natural, and biological control. Of the studies evaluated, 35.29% used biological control, 17.65% 

used control with natural agents, 11.76% used physical control, and the others corresponded to 5.88% each. 72.22% 

are related to the control of fungal pathogens, 16.67% to the control of bacteria, and only 11.11% to the virus. 94.12% 

were effective, and only 5.88% were not successful in controlling. Overall, our findings expand our knowledge about 

the alternative treatments that are efficient against pathogens associated with bean seeds which could serve as an 

alternative tool for plant disease management and seed treatment. 

Keywords: Phaseolus vulgaris L.; Seed disease; Management practices; Sanity. 
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Resumo  

Patógenos de sementes comprometem a produção de feijão. O tratamento de sementes é usado para mitigar a 

incidência e os danos dos patógenos; entretanto, as formas de controle devem ser eficientes e seguras. Dessa forma, o 

objetivo deste trabalho é discutir os controles de patógenos em sementes de feijão utilizando diferentes tratamentos e 

identificamos as tecnologias estudadas para esses fins. Esta revisão avaliou artigos que utilizaram diferentes 

estratégias para controlar o patógeno de sementes de feijão. Existem classificações de tratamento, em que os produtos 

químicos sintéticos são os mais eficientes, mas, representam risco à saúde humana, aos animais e ao meio ambiente. 

No entanto, soluções alternativas e complementares para o controle desses microrganismos têm sido buscadas no 

controle físico, natural e biológico. Dos estudos avaliados, 35,29% utilizaram controle biológico, 17,65% utilizaram 

controle com agentes naturais, 11,76% utilizaram controle físico e os demais corresponderam a 5,88% cada. 72,22% 

estão relacionados ao controle de patógenos fúngicos, 16,67% ao controle de bactérias e apenas 11,11% ao vírus. 

94,12% foram eficazes e apenas 5,88% não tiveram sucesso no controle. Os tratamentos alternativos que são 

eficientes contra patógenos associados a sementes de feijão que podem servir como uma ferramenta alternativa para o 

manejo de doenças de plantas e tratamento de sementes.  

Palavras-chave: Phaseolus vulgaris L.; Doença de sementes; Práticas de manejo; Sanidade. 

 

Resumen  

Patógenos en semillas que comprometen la producción de frijol. El tratamiento de semillas se usa para mitigar la falla 

y el daño por patógenos; Sin embargo, las formas de control deben ser eficientes y seguras. De esta forma, el objetivo 

de este trabajo es luchar contra el control de patógenos en semillas de frijol utilizando diferentes tratamientos e 

identificamos cómo se utilizan las tecnologías para estos fines. Esta revisión evaluó artículos que utilizan diferentes 

estrategias para controlar el patógeno de la semilla de frijol. Existen clasificaciones de tratamientos, en los que los 

químicos sintéticos son los más eficientes, pero representan un riesgo para la salud, los animales y el medio ambiente. 

Sin embargo, se han utilizado soluciones alternativas y complementarias para el control de estos microorganismos en 

el control físico, natural y biológico. De los estudios de evaluación, el 35,29% utiliza control biológico, el 17,65% 

utiliza control natural, el 11,76% utiliza control físico y los demás corresponden al 5,88% cada uno. El 72,22% está 

relacionado con el control de patógenos fúngicos, el 16,67% con el control de bacterias y solo el 11,11% con el virus. 

El 94,12% fueron efectivos y solo el 5,88% no tuvieron éxito en el control. Tratamientos alternativos que son 

eficientes contra los patógenos asociados a la semilla de frijol que pueden servir como una herramienta alternativa 

para el manejo de enfermedades de las plantas y el tratamiento de semillas. 

Palabras clave: Phaseolus vulgaris L.; Enfermedad de la semilla; Prácticas de manejo; Sanidad. 

 

1. Introduction  

Common beans (Phaseolus vulgaris L.) is among the top three crops for human consumption, after soybeans (Glycine 

max (L.) Merr.) and peanuts (Arachis hypogea L.) (Mayo-prieto et al. 2020). In addition, it is a Fabaceae of higher worldwide 

importance, especially in developing countries, as they are sources of protein, starch, and dietary fiber in the population's diet, 

making them beneficial to health (Meziadi et al. 2016; Los et al. 2018). 

 The bean is produced by small and large producers with different technological levels, seeking to meet the 

increasingly high consumer demand (Ishizuka et al. 2020). However, bean is considered a rustic plant, the producers use seeds 

with low technologies and low phytosanitary quality, that can be an agent of disease transmission and source of primary 

pathogen inoculum (Sabaté et al. 2018). So, these contaminated seeds cause direct problems such as rot, shrinkage, necrosis, 

and reduction of physiological potential around the world (Kumar; Gupta 2020; Naqvi; Rehman 2013).  

Several microorganisms cause disease in a seedling such as fungus, bacteria, virus, or nematodes, it is a seed-borne 

pathogen (Yahaya; Yakasai 2022)..The fungal pathogens that affect seeds are divided into field and storage pathogens (Amza 

2018). Most of these are common in storage and belong to the genera Penicillium, Aspergillus, and Rhizopus that deteriorate 

the seeds to the point of making them unfit for consumption and planting (Shamsi; Khatun 2016). On the other hand, field 

fungi, comprise the genera: Alternaria, Colletotrichum, Cladosporium Link, Fusarium, Helminthosporium Link, and 

Aureobasidium Viala & G. Boyer (as – Pullularia) that contaminate the seeds development on the mother plant or after their 

fruits have ripened (Christensen, Kaufmann 1965; Friesen et al. 2014). The diseases such as common bean mosaic virus 

(BCMV) are caused by virus and affect bean seeds, making them a source of disease dissemination (Elsharkawy; El-say 2015). 

The mainl example of diseases caused by bacteria on beans is the spot, caused by Xanthomonas spp. (Derrasse et al. 2018). 
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Several treatments can be used to prevent, control, and reduce the incidence of inoculum of pathogens in seeds such as 

management with synthetic chemicals, physical strategies, biological control using antagonists, resistance-inducing 

compounds, inorganic and organic natural products (Spadaro et al. 2017). However, the better practices are dependent on the 

species to be treated, the pathogens involved, and the technological levels of the producers (Wolf et al. 2008; Fang et al. 2021). 

Thus, the aim of the present review was to provide a brief overview of the management strategies on the control of pathogens 

in bean seeds using different treatments and identify the technologies that have been studied for these purposes, their 

efficiency, and perspectives. To collect these data, seventeen scientific articles published between the years 2018 to 2022 were 

accessed. 

 

2. Methodology 

The methodology used in the research is a narrative literature review like those performed by Almeida et al. (2021), 

Souza et al. (2022) e Samreen et al. (2021). The contents were observed in which the following search platforms were used: 

SciELO, ScienceDirect, Elsevier, PubMed, SpringerLink, Google Scholar, and CAPES Periodical. Only international literature 

was searched with the selection criteria established by the authors but within the theme and year of publication. The search 

terms used were related to the areas of seed pathology, seed technology, and phytopathology, such as: &quot;Seed-borne in 

beans&quot;, &quot;seed-borne&quot;, &quot;seed treatment&quot;, &quot;common bean seed treatment&quot; and 

&quot;bean seed pathogens&quot;. For the survey of the most current studies regarding the controls of pathogens in bean 

seeds, 17 scientific articles were accessed from 2018 to 2022. 

 

3. Development 

3.1 Main pathogens that affect bean seeds 

Seed-borne pathogens that cause disease in bean plants include viruses, viroids, nematodes, bacteria, and fungi 

(Spadaro et al. 2017). Associated with seeds these pathogens causes damage directly such as wrinkling, discoloration, 

biochemical changes, and loss of germination and vigor, can be disseminated by seeds in three different ways: internally the 

seed, externally, or in a mixture (Gaur et al. 2020). 

Colletotrichum lindemuthianum (Sacc. & Magnus) Briosi & Cavara, Diaporthe phaseolorum (Cooke & Ellis) Sacc., 

Diaporthe phaseolorum var. soybean (Lehman) Wehm., Fusarium oxysporum f.sp. phaseoli JB Kendr. & WC Snyder, 

Macrophomina phaseolina (Tassi) Goid., Phytophthora phaseoli Thaxt., Rhizoctonia solani JG Kühn, Sclerotinia sclerotiorum 

(Lib.) De Bary (Gaur et al. 2020) are the fungal group that causes diseases in bean seeds. For El-benawy et al. (2020), the most 

abundant fungal pathogens found in bean seeds are Aspergillus niger Tiegh, A. flavus Link, A. ochraceus G. Wilh., Rhizopus 

stolonifer (Ehrenb.) Vuill. and Cladosporium spp. 

Seeds are also vectors for nematodes and viruses. Viruses cause low production yields and economic losses, and in 

these cases, control measures must be preventive (Kaur et al. 2020). For example, common bean mosaic virus (Bean common 

mosaic virus-BCMV) has the potential for vertical transmission through contaminated seeds. However, there is no efficient 

biological or natural control strategy against BCMV infection. (Mardani-Mehrabad et al. 2020). For Meziadi et al. (2017), the 

most efficient control for diseases of viral etiology is through certified plants and seeds, chemical control of the vector, and 

genetic resistance. 

The losses caused by bacterial pathogens in seeds are also variable in environmental conditions and each location 

(Singh; Rathaur 2020). According to Singh and Rathaur (2020), the bacteria Pseudomonas syringae pv. phaseolicola, 

Curtobacterium flaccumfaciens pv. flaccumfaciens, Xanthomonas axonopodis pv. phaseoli, X. fuscans var. fuscans are bean 
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seed-borne pathogens. In which common bean bacterial scab, caused by pathogens Xanthomonas citri pv. fuscans (Xcf) and 

Xanthomonas phaseoli pv. phaseoli (Xpp) causes damage to all aerial parts of plants, including seeds, so using seeds free of 

these pathogens is essential as a management tactic (Chen et al. 2021). 

Concern about seed-borne bacteria is pertinent, as management strategies for these pathogens are limited due to the 

limited amount of chemical treatment. Alternatively, the solution to this problem has been sought in physical control, such as 

thermotherapy, biological control, and seed health tests. However, it is essential to emphasize that the effectiveness of these 

controls will depend on the location of these pathogens in the seed and on their ability to disseminate (Darrasse et al. 2018). 

 

3.2 Methods used for the control of pathogens associated with bean seeds 

There are many treatment classifications for seed sector, such as fungicides, insecticides, and biocontrol, but they can 

also be divided into natural chemicals and non-chemicals (Bisen et al. 2015). Seed treatment to protect against pests and 

diseases is a practice used for centuries, such as the salt used in the year 1600 to treat wheat seeds against rust (Hitaj et al. 

2020). Later, in 1920, it evolved into organic mercury to control seed-borne pathogens, and in 1930, dithiocarbamates and 

organotin fungicides began to be used (Oerke 2006; Goggi 2011). 

However, according to Hitaj et al. (2020), the low amount of published data regarding seed treatment makes it 

difficult for researchers and farmers to compare the benefits and costs, evaluate economic aspects and yields, and adverse 

effects on the environment. 

 

3.2.1 Synthetic chemicals 

Diseased bean seeds treated with fungicides arethe most effective way to control pathogens that affect the crop in the 

early stages, and its importance has become notorious in commercial plantations (Cardillo et al. 2019). There are three 

directions for treating seeds with fungicides; the first is to control soil-transmitted fungal pathogens; the second refers to the 

control of fungal pathogens that are on the surface of the seed and the third to the control of those that are inside the seed 

(Mcmullen; Lamey 2000). However, it is important to note that fungicides do not control bacterial or viral pathogens, nor do 

they control all fungi (Mcmullen and Lamey, 2000). 

  For seed treatment with synthetic chemicals, products belonging to the chemical groups of triazole, carboxin, 

acylalaninate, dicarboximide, benzimidazole, and strobilurins, as well as the products: carboxin + thiram, fludioxonil + 

metalaxyl-M, fluazinam+thiophanate- methyl, carbendazim, fludioxonil, diazinon, captan, thiophanate-methyl, diazinon + 

captan + thiophanate-methyl (DCT) and metalaxyl-M + fludioxonil + azoxystrobin (MFA) (Gillard et al. 2012; Udayashankar 

et al. 2012; Gillard; Ranatunga 2013; Oliveira et al. 2016). 

Neseri and Hemmati (2017) recommend that bean seeds are treated with fungicide before planting to reduce 

epidemics caused by Fusarium and Rhizoctonia root rots. However, sterilization of the seed surface – which results in the 

death of external microorganisms – can promote the growth of endogenous fungi (El-benawy et al. 2020). Synthetic fungicides 

can act at a single site of action or at multiple sites (multisite) (Baibakova et al. 2019; Yang et al. 2019). Fungicides from the 

strobiluraria group inhibit mitochondrial respiration by binding to the Qo site of cytochrome binding ATP production (Bartlett 

et al. 2002, Balba, 2007). Benzimidazoles achieve β-tubulin assembly, mitosis, and cell division (Oliver, Hewitt 2014), as does 

carbendazim which prevents microtube formation (Baibakova et al. 2019). Phenylamides inhibit RNA synthesis (Oliver, 

Hewitt, 2014) On the other hand, triazoles inhibit demethylation (sterol C-14 14α of 24-methylenedihydrolanosterol) (Ma, 

Michailides, 2005). 
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3.2.2 Physical treatment 

Physical treatments can be divided into mechanical, thermal, ultrasonic, and radiation (Spadaro et al. 2017). The 

mechanical treatment uses brushing and classification; in thermal, hot water and aerated steam or hot air are used; the 

ultrasonic and radiation use microwaves and UV-C light (Spadaro et al. 2017). The most used are hot water, hot air, and 

electrons (Mancini et al. 2013), which are essential alternative controls in controlling fungal seed diseases (Matic et al. 2014). 

In thermal control, such as hot water, what makes it possible to control the pathogen is its exposure to high temperatures 

(Kalembra et al. 2021). 

There is also non-thermal plasma, which presents itself as a promising and safe tool for controlling seed-borne 

pathogens (Pérez-Pizá et al. 2018). Low-temperature or cold plasma are partially ionized gases, usually coming from low-

current electrical discharges in which kinetic energy is stored in electrons (Pérez-Pizá et al. 2018, Sera et al. 2021). By 

providing the formation of free radicals, ions, ultraviolet light, and other chemical species, these destroy microorganisms (Devi 

et al. 2017). Plasma treatments act against fungal pathogens by different modes of action: disruption and inhibition of hyphal 

growth, changes in cell wall surface, oxidative damage, DNA degradation, changes in enzymatic activity and decrease in 

pathogen activity (Avramadis et al. al. 2010, Šimončicová et al. 2018, Adhikari et al. 2020, Susmita et al. 2022). In bacteria, 

the mode of action is different, with membrane damage occurring in gram-negative, and in gram-positive, and increase of 

indices of reactive oxygen species (Han et al. 2016, Adhikari et al. 2020). Toyokawa et al. (2017) observed that roller carrier 

plasma acts against Xanthomonas campestris pv. grasslands degrading or oxidizing DNA and destroying lipopolysaccharides. 

However, it is essential to know that these methods have their advantages (it improves germination performance, initial 

seedling growth, adaptability to biotic and abiotic stress, dormancy breaking and enzymatic activity) and disadvantages 

(compromise seed quality, high exposure times, high energy demand, dose standardization and lack of studies in large 

agricultural areas), considering treatment time, temperature, and energy dose (Selcuk et al. 2008, Taheri et al. 2020, Adhikari 

et al. 2020, Guragain et al., 2021, Mildaziene et al. 2022, Than et al., 2022, Tanakaran, Matra, 2022). 

Several authors have shown that non-thermal plasmas are able to control seed-transmitted pathogens, such as 

Aspergillus parasiticus Speare, Penicillium sp. in bean (Rüntzel et al. 2019), in addition to pathogens from chickpea, lentil, 

soybean (Selcuk et al. 2008; Pérez-Pizá et al. 2018, Taheri et al. 2020, Pérez-Pizá et al. 2021), peanut (Devi et al. 2017), Scots 

Pine (Swiecimska et al., 2020), onion (Kopacki et al. 2017), rice (Jo et al. 2014) and pepper (Ahmad et al. 2022). Non-thermal 

plasma, when applied to Fabaceae seeds under low stress, is beneficial for seed germination and seedling growth (Será et al. 

2021, Yan et al. 2022), as the results found by Pérez-Pizá et al. (2019) in which it improved the germination of soybean seeds. 

Microwave radiation for bean seed treatment to control Xanthomonas phaseoli pv. phaseoli (Friesen et al. 2014) and 

C. lindemuthianum (Friesen et al. 2014) were evaluated, but in both studies, even affecting less than 10% of seed germination, 

the method proved to be inefficient in controlling pathogens, not justifying the costs for large-scale treatment. 

 

3.2.3 Natural control agents 

During evolution, beans have acquired structural and biochemical defense mechanisms to protect themselves from 

phytopathogens (Andrade et al. 2020), such as antimicrobial peptides (AMPs) that function as a biochemical defense of plants 

against pathogen attacks (Campos et al. 2018). The AMPs can be found in roots, leaves, stems, and seeds (Nawrot et al. 2014). 

However, the presence of these toxic molecules in some organs may be low, such as those found by Andrade et al. (2020), in 

which using protein extracts from seeds of 19 bean genotypes did not inhibit the in vitro growth Colletotrichum 

lindemuthianum pathogens. (Sacc. & Magnus) Briosi & Cavara and Fusarium solani (Mart.) Sacc. Therefore, seed treatment 

methods are the most viable option since they are safer and cheaper to control diseases (Pushpavathi et al. 2017).  
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It is known that chemical control, especially the use of systemic fungicides, is the most used to control seed and plant 

diseases (Oerke 2006; Udayashankar et al. 2012; Gillard; Ranatunga 2013), but natural control methods or alternatives are also 

crucial in the control of these diseases, especially in terms of gaining space in the face of changes in public perceptions about 

the negative impacts of synthetic chemicals such as resistance gain, environmental damage and high cost (El-gali 2018; Silva 

et al. 2019; Almeida et al. 2021). From these disadvantages, antimicrobial characteristics have been sought in plants with 

intensified increase (Pushpavathi et al. 2017). Since some plants have bioactive substances and are sources of resistance 

inducers (Elsharkawy; El-sawy 2015; Zaker 2016; Hasan; Islam 2020), for the use of these active ingredients, several types of 

extraction can be used, such as aqueous, dry extract and oil extraction (Spadaro et al. 2017). 

These substances biosynthesized in plant secondary metabolism with antimicrobial or elicitor effects can be divided 

into classes, the main ones being: phenolics, terpenoids, essential oils, alkaloids, lectins, polypeptides, and polyacetylenes 

(Zaker 2016; Cowan 1999). Phenolics are involved in cell wall membrane disruption and substrate deprivation; terpenoids and 

essential oils in the membrane rupture, whereas the alkaloids intercalate in the cell wall and/or DNA. Also, according to 

Cowan (1999), terpenoids are characteristic of plant odors and quinones and tannins for pigmentation. Simple phenolic 

compounds such as flavones, flavonoid glycosides, coumarins and anthraquinones act inhibiting proteins present in cells. In 

addition, promote cell lysis of the cytoplasmic membrane of phytopathogenic fungi (Jiménez-Reyes et al. 2019). As well, it 

enables the resistance conferred due to the presence of elicitor agents, and treating seeds with these elicitors can result in plant 

defense responses at the beginning of their development (Spadaro et al. 2017). Furthermore, many researchers support using 

natural products as biofungicides for seed treatment, such as extracts of Agapanthus caulescens Spreng., Allium sativum L., 

Carica papaya L., and Syzygium cordatum Hochst.ex Kraus (Masangwa et al. 2017), Peganum harmala L., Urtica dioica L. 

and Helichrysum stoechas DC (El-gali 2018) and Azadirachta indica A. Juss (Arefin et al. 2019). Essential oils of Thymus 

vulgaris L. (Chrapaciené et al. 2022), Tithonia diversifolia (Hemsl.) A. Gray (Dongmo et al. 2021) and Melaleuca 

rhaphiophylla Schauer (Zimmermann et al. 2022). 

 

3.3 Biocontrol agents  

Microorganisms used as biological control management strategies provide a safe option for the environment and are 

potentially stable compared to control with synthetic chemicals (Sabaté et al. 2020). Fungi of the Trichoderma genus are 

important antagonists since they can survive in different unfavorable conditions, have rapid colonization, compete for space, 

nutrients and modify the rhizosphere (El-benawy et al. 2020). Carvalho et al. (2014) concluded that Trichoderma harzianum 

(CEN287) reduced the incidence of F. oxysporum f.sp. phaseoli JB Kendr. & WC Snyder in “BRSValente” bean seeds, and 

promoting better plant growth. 

There are also bacteria of the genus Bacillus spp., which are used because they have plant growth-promoting 

activities, agents for biological control, and production of bioactive compounds (Torres et al. 2017; Babalola 2010). Bacillus 

amyloliquefaciens PGPBacCA1 was tested as a seed treatment and controlled Aspergillus spp., Penicillium spp., and Fusarium 

spp. in white bean cultivar; and Rhizopus spp., Aspergillus spp., Penicillium spp., Fusarium spp. and Rhizoctonia spp were 

controlled in black bean cultivars (Torres et al. 2017). B. subtilis strain GBO3 was used in the field, and showed a reduction in 

bean root rot caused by F. solani f.sp. phaseoli WC Snyder & HN Hansen, F. oxysporum sensu Smith & Swingle and R. solani 

JG Kühn. However, the number of diseases that biocontrol organisms can control is still scarce, evident in the few products 

used (Fernandes et al. 2021). 

Biocontrol agents can act against plant pathogens in directly and indirectly forms (Ferreira, Musumeci, 2021). The 

direct mode of action against the pathogens are competition for nutrients, spaces and oxygen, secretion of antimicrobials, 

enzyme-mediated lytic mechanism, hyperparasitism and produce antimicrobial metabolites such as those with antibiotic 
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properties (Ashwini, Srividya, 2014, Zohora et al. 2016, Köhl et al. 2019, Ferreira, Musumeci, 2021). Indirectly, they promote 

plant strengthening and resistance induction, enabling the production of secondary metabolites (Ferreira, Musumeci, 2021). 

 

3.4 Control technologies 

According to Nzungize et al. (2012), in Latin America and on the African continent, the coating of bean seeds with 

synthetic chemicals to control seed-borne pathogens is one of the safest and most economically viable. The presence of many 

farmers with low purchasing power and low technological level, who do not have the resources to pay for these technologies 

and do not have instructions for their handling, results in their contamination and the environment. For Kalantari et al. (2018), 

there is a need to explore different mixtures of rhizobacteria with synergistic interaction, seeking a more sustainable bean 

production. Nevertheless, El-koly et al. (2021) reported that using chemical fungicides in the treatment of bean seeds was more 

efficient than biological ones. 

Faced with the divergence of perceptions - based on results from particular studies - and the plurality of bean seed 

treatment, this study consulted 17 scientific articles about bean seed treatment, which forms of control were used, which 

pathogens were used and evaluated and whether they were efficient. Of the studies consulted, 35.29% used biological control 

to treate the diseases seeds against pathogens; 17.65% used natural agents control, 11.76% used the physical control, and other 

studies correspond 5.88%. They evaluated one or more forms of control or also two forms simultaneously. They are chemical, 

physical, and natural; chemical and biological; physical + chemical; natural + biological and chemical + biological. Among the 

etiological agents, 72.22% of the studies consulted are related to the control of fungal pathogens, 16.67% to bacteria control, 

and only 11.11% to virus control (Table 1).  

Biological control and plant extracts are increasingly prominent in managing plant diseases and can target the 

pathogen directly or indirectly (El-Mohamedy et al. 2013; Marquez et al. 2021). According to Kalantari et al. (2018), the 

seeds,treated with Bacillus subtilis and Rhizobium leguminosearum reduces the incidence of root rot caused by Fusarium 

solani f. sp. phaseoli WC Snyder & HN Hansen, as well as increasing the vegetative and productive yield of beans. Sabaté et 

al. (2020) demonstrated that seeds inoculated with Bacillus sp. strain P12 showed a reduction of approximately 40% in the 

incidence of Macrophomina phaseolina (Tassi) Goid, as well as an increase in beneficial microorganisms in the soil and it was 

more efficient than the fungicide used (Maxim®Evolution). 

 

Table 1 - List of studies that used different strategies to manage pathogens in Phaseolus vulgaris L. seeds. 

Form of 

Control 
Treatment 

Type of 

pathogen 
Evaluated Pathogens 

Is it effective 

in 

controlling 

the 

pathogen? 

Reference 

Biological 
Bacillus spp. B19, P12 e B. 

amyloliquefaciens B14 
Bacterium 

Sclerotinia sclerotiorum 

Lib. from Bary, 

Cladosporium sp., 

Fusarium sp., Rhizopus 

sp. 

Yes Sabaté et al. (2018). 

Biological 
Bacillus amylolicefaciens 

ALB629 
Bacterium 

Rhizoctonia solani JG 

Kühn 
Yes 

Martins et al. 

(2018). 

Natural Helichrysum stoechas DC. Fungus 
Sclerotinia sclerotiorum 

(Lib.) from Bary 
Yes El-Gali (2018). 

Biological 
Bacillus subtilis, Rhizobium 

leguminosearum 
Fungus 

Fusarium solani f.sp. 

phaseoli WC Snyder & 

HN Hansen 

Yes 
Kalantari et al. 

(2018). 

Natural 

essential oil of 

Cinnamomum zeylanicum 

Garcin ex Blume 

Fungus 
Aspergillus spp. and 

Penicillium spp. 
Yes 

Valentini et al. 

(2019). 

Natural Ulvan Fungus Fusarium oxysporum f.sp. No Borba et al. (2019). 
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phaseoli WC Snyder & 

HN Hansen 

Biological 

Chemical 

Natural 

Trichoderma harzianum 

Rifai Iprodione 20% + 

tebuconazole 10% and 

extract of cloves, thymus 

and garlic. 

 

Fungus 

Colletotrichum 

lindemuthianum (Sacc. & 

Magnus) Briosi & Cavara 

and Colletotrichum 

dematium (Pers.) Grove. 

 

Yes 

Sewedy et al. 

(2019). 

Biological Pseudomonas putida F1 Virus 
Common mosaic 

(BCMV) 
Yes 

Elsharkawy; El-

Sawy (2019). 

Physicist 
 

Cold plasma 
Fungus 

Aspergillus parasiticus 

Speare and Penicillium 

sp. 

Yes 
Runtzel et al. 

(2019). 

Biological Bacilo sp. strain P12 Fungus 
Macrophomina 

phaseolina (Tassi) Goid 
Yes Sabaté et al. (2020) 

Biological 
Trichoderma atroviride P. 

Karst 
Fungus 

Macrophomina 

phaseolina (Tassi) Goid 

and Rhizoctonia solani JG 

Kühn 

Yes 
El-Benawy et al. 

(2020). 

 

Physicist + 

Chemical 

Gamma rays + salicylic acid 

 
Virus 

Common bean mosaic 

(BCMV) 
Yes 

Mardani-mehrabad 

et al. (2020). 

Chemical, 

Physicist and 

natural. 

Benomyl, garlic clove 

extract and heat treatment. 
Fungus 

Alternaria, Aspergillus, 

Curvularia, Drechslera, 

Fusarium, Mucor, 

Penicillium and Rhizopus. 

Yes 
Hussain et al. 

(2020). 

Natural+ 

Biological 

Mycorrhizal lemongrass 

essential oil 
Fungus 

Fusarium solani f. sp. 

phaseoli (Fsp) WC 

Snyder & HN Hansen 

Yes Eke et al. (2020). 

Chemical + 

Biological 

Methyl thiophanate, 

fludyoxonyl, Trichoderma 

asperellum Samuels, Lieckf. 

& Nirenberg and 

Trichoderma sp. strain 1306 

Fungus 

Fusarium oxysporum f.sp. 

phaseoli JB Kendr. & WC 

Snyder 

Yes 
Ishizuka et al. 

(2020). 

 

Physicist 

High pressure carbon 

dioxide 

Bacterium 

and Fungus 

Escherichia coli AW1.7, 

Salmonella Typhimurium 

ATCC13311, Salmonella 

Senftenberg ATCC43845, 

Salmonella Bareilly 

FUA1934, Salmonella 

Enteritidis FUA1946, 

Salmonella Thompson 

FUA1955, Aspergillus 

niger FUA 5001, 

Penicillium roqueforti 

FUA 5004 

Yes Fang et al. (2021). 

Chemical 

and 

Biological 

Carboxin + thiram, 

fludioxonil + metalaxyl-M, 

tebuconazole, (tolclophos-

methyl + thiram, Bacillus 

subtilis, Trichoderma 

asperellum and 

Trichoderma harzianum 

Fungus 

Fusarium solani (Mart.) 

Sacc., Rhizoctonia solani 

JG Kühn, Pythium 

ultimum Trow and 

Sclerotium rolfsi Sacc. 

Yes 
El-koly et al. 

(2021). 

Source: From the authors. 

 

The efficiency of different treatments in controlling these seed pathogens, 94.12% of the studies were efficient in the 

seed disease control, and only 5.88% were not efficient. The study conducted by Borba et al. (2019) corresponded to the 

unsuccessful percentages, which stated that even though Ulvana provided an emergence increase of 61%, it did not control F. 

solani f.sp. phaseoli (Fsp) WC Snyder & HN Hansen in bean seeds. However, Eke et al. (2020) demonstrated that mycorrhizal 

lemongrass essential oil efficiently controls these pathogens.  

As for Ishizuka et al. (2020), the combination of methyl ethiophanate with Trichoderma sp. reduces the incidence of 

F. oxysporum f.sp. phaseoli (Fsp) WC Snyder & HN Hansen. According to Sewedy et al. (2019), Trichoderma harzianum, 
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Iprodione 20% + Tebuconazole 10%, and clove, thyme, and garlic extracts decreased the growth of Colletotrichum 

lindemuthianum (Sacc. & Magnus) Briosi & Cavara and Colletotrichum dematium (Pers.) Grove. Hussain et al. (2020), 

evaluating bean seed microflora and its treatment in three types of control: Benomyl, garlic clove extract, and heat treatment 

(50 °C for 15min), observed that all of them were efficient in controlling Alternaria sp., Aspergillus sp., Curvularia sp. 

Drechslera sp., Fusarium sp., Mucor sp., Penicillium sp., and Rhizopus sp., Benomyl treatment was more efficient. 

According to El-Gali (2018), the use of extracts and powders of Helichrysum stoechas DC. are effective and 

inexpensive to control Sclerotinia sclerotiorum (Lib.), De Bary, in the seed, the presence of high content of phenols, 

flavonoids, glycosides, tannins, terpenoids, and resins in the leaves may be related to this success. Valentini et al. (2019) state 

that the essential oil of Cinnamomum zeylanicum Garcin ex Blume was efficient in controlling Aspergillus spp. and 

Penicillium spp.  

Regarding physical control, the study carried out by Fang et al. (2021) showed that high-pressure carbon dioxide 

treatments can be used to reduce or eliminate bacterial and fungal contaminants. Mardani-Mehrabad et al. (2020) stated that 

the exogenous application of salicylic acid, associated or not, with low concentrations of gamma-ray in the seeds (20 and 

30Gy) reduces the infection transmitted by seeds with BCMV. However, Elsharkwy et al. (2019) found the treatment with a 

biological agent with Pseudomonas putida F1 another option against BCMV since this treatment allowed a lower incidence of 

the disease and better plant development due to the increase of genes and defense enzymes. Rüntzel et al. (2019), exposing 

bean seeds to cold plasma for 10 to 30 minutes, found an efficient control of Aspergillus parasiticus Speare and Penicillium sp. 

Among the results found in the present study, it was demonstrated that most studies focus on biological and natural 

control, but it is worth mentioning that when observing both the aforementioned controls, the use of seeds treated with 

synthetic chemicals as a control treatment was observed, such as studies by Sabaté et al. (2018), Martins et al. (2018), Sabaté et 

al. (2020), Valentini et al. (2019), Borba et al. (2019) and Eke et al. (2020) and Elsharkawy; El-Sawy (2019). Thus, it can be 

deduced that as synthetic chemicals already have their efficiency proven through their patents and registrations, new tools for 

alternative controls of these pathogens are important to being sought to provide an alternative tool to producers.  

Therefore, the scientific perception becomes evident, which is also focused on using sustainable and low-cost 

technologies, enabling agriculture that is less aggressive to the environment and guarantees better food security. It is pertinent 

to emphasize that these alternative treatments are essential for organic agriculture and that their use is promising (Spadaro et al. 

2017; Pushpavathi et al. 2017; Pérez-Pizá et al. 2019; Almeida et al. 2021), as there are few options to reduce seed-borne 

pathogens (Wolf et al. 2008). 

 

4. Conclusion  

In this study, we assessed the different strategies to management of bean seeds pathogens. Our analysis revealed that 

the use of synthetic chemicals is the most efficient strategy to manage plant disease caused by seed-borne pathogens, as shown 

in several studies. The mechanisms of action are inhibition of cell respiration, mitosis, cell division, RNA synthesis and 

demethylation. However, due to changes in society's perceptions of their impacts on the environment and human health, it was 

noticed that several researches consulted is focused on the use of alternative treatments, which the most studied are those about 

biocontrol and with natural agents, as well as a growing increase in the use of non-thermal plasma for the control of pathogens 

transmitted by seeds. These alternative treatments proved to be efficient in controlling pathogens associated with bean seeds, 

mainly against fungal agents. Thus, the set of changes caused by alternative strategies such as protein inhibition, cell lysis, and 

resistance conferred reflected in incidence and severity reductions of plant diseases. The Biocontrol and natural agents are 

alternative managements that can be considered tools for the control of seed diseases.  
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Considering the importance of seed-borne pathogens in bean plant, a better understanding of alternative management 

practices is of paramount importance to develop strategies that decrease production losses and focus on the concept of global 

health. Therefore, further studies are needed to explore more efficient natural agents, their form of application and action on 

specific pathogens transmitted by seeds. 
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