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Abstract 

This paper presents an approach for the classification of child chest X-ray images into two 

classes: pneumonia and normal. We employ Convolutional Neural Networks, from pre-trained 

networks together with a quantization process, using the platform TensorFlow Lite method. 

This reduces the processing requirement and computational cost. Results have shown accuracy 

up to 95.4% and 94.2% for MobileNetV1 and MobileNetV2, respectively. The resulting mobile 

app also presents a simple and intuitive user interface. 

Keywords: Classification; Images; Quantization; Mobile Devices; Pneumonia. 

 

Resumo 

Este artigo apresenta uma abordagem para a classificação de imagens de radiografias de tórax 

de crianças em duas classes: pneumonia e normal. Empregamos Redes Neurais Convolucionais, 

a partir de redes pré-treinadas em conjunto com um processo de quantização, utilizando o 

método da plataforma TensorFlow Lite. Isso reduz a necessidade de processamento e o custo 

computacional. Os resultados mostraram precisão de até 95,4% e 94,2% para MobileNetV1 e 

MobileNetV2, respectivamente. O aplicativo móvel resultante também apresenta uma interface 

de usuário simples e intuitiva. 

Palavras-chave: Classificação; Imagens; Quantização; Dispositivos Móveis; Pneumonia. 

 

Resumen 

Este artículo presenta un enfoque para clasificar las imágenes de rayos X de tórax de los niños 

en dos clases: neumonía y normal. Usamos redes neuronales convolucionales, de redes pre-

entrenadas junto con un proceso de cuantificación, utilizando el método de la plataforma 

TensorFlow Lite. Esto reduce los requisitos de procesamiento y el costo computacional. Los 

resultados mostraron una precisión de hasta 95,4% y 94,2% para MobileNetV1 y MobileNetV2, 

respectivamente. La aplicación móvil resultante también cuenta con una interfaz de usuario 

sencilla e intuitiva. 

Palabras clave: Clasificación; Imágenes; Cuantización; Dispositivos móviles; Neumonía. 

 

1. Introduction 

 

Pneumonia is the leading infectious cause of death among children worldwide. 

According to the World Health Organization it killed 920,136 children under 5 years of age in 

2015, which accounts for 16% of all deaths. Pneumonia affects children and families 
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everywhere, but it is more prevalent in South Asia and sub-Saharan Africa (World, 2016). 

Chest X-rays are often used to assess cases of pneumonia and are the most commonly 

used diagnostic tests for chest-related diseases. A very small dose of ionizing radiation is used 

to produce breast imaging (Kermany, et al, 2018). 

Pneumonia causes a pulmonary consolidation, meaning that the pulmonary alveoli are 

full of inflammatory fluid, instead of air (Iorio, et al., 2018). The image identification of 

pneumonia, as shows in Figure 1, is related to the opacities seen on the radiography. Normal 

lungs exhibit darker parts near the spine (bronchi filled with air (Kunz, et al., 2018)), whereas 

abnormal lungs show lighter (opaque) patches, as alveoli are filled with fluid. 

The low accuracy in the diagnosis of pneumonia may lead to excessive prescription of 

antibiotics, which is harmful to patients, and is also a cause of inventory waste. Antibiotics also 

kill beneficial bacteria, causing unintended health problems (Kurt, Unluer, Evrin, Katipoglu, & 

Eser, 2018). Moreover, the excessive use of antibiotics may lead to the proliferation of drug 

resistant bacteria. 

Considering this scenario, computational systems capable of providing fast and accurate 

Pneumonia diagnosis are of great importance and are becoming increasingly common 

(Manogaran, Varatharajan, & Priyan, 2018). Used as an aid tool, they can minimize errors 

(Malmir, Amini, & Chang, 2017), while screening potential infected patients. 

A recent trend in classification is the use of deep learning techniques (especially 

Convolutional Neural Networks - CNN's) that can deliver high classification accuracy at the 

expenses of high computing cost. To reduce this cost, several quantization schemes have gained 

attention recently, with some focusing on quantization of weight and others focusing on the 

activation quantizations (Choi, et al., 2018). 

As a result, extensive research on weight quantification and activation to minimize 

CNN's computing and storage costs has been conducted, making it possible to effectively host 

such solutions on platforms with limited resources (for example, mobile devices) (Choi, et al., 

2018). 

This paper describes a mobile device system capable of classifying children's chest X-

ray images into two classes: Pneumonia and Normal. Samples from a pre-trained CNN are 

subject to a quantization stage through the TensorFlow Lite platform (Jacob, et al., 2018), 

considerably reducing the computational cost and processing times. 

The proposed method uses two pre-trained neural networks, known as MobileNetV1 

(Howard, et al., 2017) and MobileNetV2 (Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018), 

for the construction of a mobile application aiming at greater mobility. As a result, fast and 
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accurate diagnosis of childhood pneumonia, especially in remote areas with precarious 

conditions can be attained.  

This paper comprises four sections. In section 2 presents materials and methods, results 

and conclusion are given in Sections 3 and 4, respectively. 

 

2. The Proposed Method 

 

We now present the proposed methodology for the training and classification of 

pneumonia from x-ray images on mobile devices. 

 

2.1. Dataset 

We start by describing the dataset used in the experiments.  The images come from the 

Guangzhou Women and Children Medical Center, taken from pediatric patients aged one to 

five years. They are all part of the routine clinical procedure (Kermany, Zhang, & Goldbaum, 

2018). It contains 5856 chest X-ray images (anteroposterior), categorized as: Viral Pneumonia 

(1493), Bacterial Pneumonia (2780) and Normal (1583). The dataset possesses quality control, 

with garbled and low-quality images removed. The diagnosis was given by two specialist 

physicians and checked by a third one in order to minimize errors (Kermany, Zhang, & 

Goldbaum, 2018). 

In Figure 2 it is possible to analyze how the dataset was divided into training and 

validation and also the number of images in each class can be analyzed. The first two columns 

represent the training and test division, the blue column represents the amount of training with 

70% of the images, while in orange the amount of test images with 30% is presented. In the last 

two columns is represented the number of images for each class, in blue is represented the 

Normal class with 27% of the images, while in orange is represented the Pneumonia class with 

73% of the images. 

 

 

 

 

 

 

 

Figure 1- A lung x-ray: a) normal and b) pneumonia. Font: (Kermany, Zhang, & Goldbaum, 2018). 
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Figure 2 - A lung x-ray: a) normal and b) pneumonia.  
 

  

 

 

 

 

 

Font: Kermany, Zhang, & Goldbaum, (2018). 

 

 

 

Figure 3 - Dataset Division.  

 

Source: Authors. 

 

2.2.   Pipeline Method’s 

 

The diagram illustrated in Figure 3 shows the method's main constituent parts. Is 

comprised four main modules: a) a pre-trained model; b) a transfer learning process in which 

x-ray lung images are trained; c) quantization through the TensorFlow Lite (Hubara, 

Courbariaux, Soudry, El-Yaniv, & Bengio, 2017) which aims at optimizing the model for the 

mobile application and d) the android app for the final classification of x-ray images. 



Research, Society and Development, v. 9, n. 10, e889108382, 2020 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v9i10.8382 

6 

Figure 4 - Pipeline of the proposed method.  

 

Source: Authors. 

 

2.3.   Transfer learning 

 

Transfer Learning is a common trend in Deep Learning which aims at storing knowledge 

gained while solving one problem and applying it to a different but related problem. It is present 

in many applications such as: (Abidin, et al., 2018) (Douarre, Schielein, Frindel, Gerth, & 

Rousseau, 2018) (Khatami, et al., 2018) (Baltruschat, Nickisch, Grass, Knopp, & Saalbach, 

2018) (Chen, Dou, Chen, & Heng, 2018). The technique consists in using a pre-trained model 

with distinct classes of the problem to be solved (Wu, Qin, Pan, & Yuan, 2018), this becomes 

an advantage in the use of small data sets (Shallu & Mehra, 2018) because there is a difficulty 

in getting large enough sets of data for specific problems (Ramalingam & Garzia, 2018), 

making it has to train complex models such as: VGG19, Xception, Inception V3, among others. 

Transfer learning normally preserves the initial and intermediates layers, while the final 

layer is replaced and trained again (Ramalingam & Garzia, 2018). Figure 4 illustrates the 

transfer learning process.  

For the training of neural networks, all weights are defined as non-trainable, since they 

were trained with the ImageNet data set. Hence, the last layer of the networks is removed and 

four dense layers are added, with the latter having the same number of neurons as the number 

of classes to be classified. The SoftMax function is used to activate the last layer of the networks 

in Figure 4. 
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Figure 5 - Transfer learning Architecture. 

 

Source: Authors. 

 

The hyperparameters for each of the networks are shown in Table 1. The epoch 

parameter used for both networks was set to 100. It indicates the number of times the data set 

is analyzed at each layer of the network. This epoch values gives MobileNetV1 and edge over 

MobileNetV2 in relation to the training time which is shorter in the former. The Batch Size 

parameter (hyperparameter that defines the number of samples to work before updating the 

internal model parameters) form MobileNetV1 and MobileNetV2 is set to 30 and 40, 

respectively. 

 

Table 1 - Training hyperparameters of MobileNetV1 and MobileNetv2. 

CNN Learning Rate Optimizer Batch Size Epochs 

MobileNetV1 0.0001 Adam 30 100 

MobileNetV2 0.0001 Adam 40 100 

Source: Authors. 

 

The processing was performed using a GeForce GTX 1060 video card, with 1280 

CUDA cores (processors), 6 GB of dedicated memory, 12 GB of RAM and a fourth generation 

Core i5 processor. The training time for the networks was as follows: 150 minutes for 

MobileNetV1 and 200 minutes for MobileNetV2. 
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2.4.   Quantized Neural Networks 

 

Quantized Neural Networks (QNNs) use low accuracy weights and activations. These 

networks are trained from scratch in an arbitrary fixed-point precision. Where in iso-precision, 

QNNs that use fewer bits require deeper and wider network architectures than networks that 

use more accurate operators, while requiring less complex arithmetic and fewer bits per weight 

(Moons, Goetschalckx, Van Berckelaer, & Verhelst, 2017). 

A method was introduced to train quantized neural networks (QNNs) with weights and 

activations of extremely low precision (for example, 1 bit) at runtime. During the training stage, 

quantized weights and activations are used to calculate the parameter gradients. During the next 

steps, QNNs dramatically reduce memory size and access, replacing most arithmetic operations 

with bit-by-bit operations (Hubara, Courbariaux, Soudry, El-Yaniv, & Bengio, 2017). 

A quantization scheme that allows inference to be performed using integer-only 

arithmetic was proposed in (Jacob, et al., 2018). It can be implemented more efficiently than 

floating-point inference in commonly available hardware-only integers. 

In our approach the weights of an existing trained model are loaded and adjusted for 

quantization. We used the pre-trained meshes MobileNetV1 and MobileNetV2. After being 

trained with the images of Pneumonia, quantization of the TensorFlow Lite was applied. Results 

are given in Table 1. 

The quantization scheme is an integer mapping q for real numbers r, that is, of the form 

(Jacob, et al., 2018): 

 

Equation 1 

𝑟 = 𝑆(𝑞 − 𝑍) 

 

This scheme consists in the multiplication of two square arrays 𝑁 × 𝑁 of real numbers, 

𝑟1 e 𝑟2 with its product represented by 𝑟3 = 𝑟1𝑟2. We denote the entries of each of these matrices 

𝑟𝛼(𝛼 = 1,2,∨ 3) as 𝑟𝛼
(𝑖,𝑗)

 for 𝑖𝑖, 𝑗𝑁, and the quantization parameters with which they are quantified 

as (𝑆𝛼 , 𝑍𝛼). We denote the inputs quantized by 𝑞𝛼
(𝑖,𝑗)

. Then, Equation 1 become becomes: 

 

Equation 2 

𝑟𝛼
(𝑖,𝑗)

= 𝑆𝛼 (𝑞𝛼
(𝑖,𝑗)

− 𝑍𝛼) 

 

From the definition of the multiplication of matrices, we have: 
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Equation 3 

𝑆3 (𝑞3
(𝑖,𝑘) − 𝑍3) =∑𝑆1 (𝑞1

(𝑖,𝑗) − 𝑍1) 𝑆2 (𝑞2
(𝑗,𝑘)

− 𝑍2)

𝑁

𝑗=1

 

 

which can be rewritten as: 

 

Equation 4 

𝑞3
(𝑖,𝑘) = 𝑍3 +𝑀∑(𝑞1

(𝑖,𝑗)
− 𝑍1) (𝑞2

(𝑗,𝑘)
− 𝑍2)

𝑁

𝑗=1

 

 

Post-training quantization was then performed, thereby reducing the model size while 

improving CPU and hardware accelerator latency, with little degradation in model accuracy. 

These techniques can be performed on an already trained TensorFlow floating model and 

applied during TensorFlow Lite conversion. The models have been fully quantized, i.e., weights 

and activations. Table 2 shows how the resulting models were fully quantized. We still keep 

the float input and output for convenience. 

 

Table 2 - Post training quantization options. 

Technique Benefits Hardware 

Post training “hybrid” 4x smaller, 2-3x speedup, accuracy CPU 

Post training integer 4x smaller, More speedup CPU, Edge TPU, etc. 

Post training fp16 2x smaller, Potential GPU acceleration CPU/GPU 

Source: Authors. 

 

2.5. MobileNetV1 

 

This network features a class of efficient models called MobileNets for mobile and 

integrated vision applications. MobileNets are based on a simplified architecture that uses 

separable convolutions in depth to build light, deep neural networks. Where two simples global 

hyperparameters are introduced that switch efficiently between latency and precision. These 

hyper-parameters allow the model builder to choose the correct size model for their application 

based on constraints of the problem (Howard, et al., 2017). 

The MobileNet model is based on depth-separable convolutions, which are forms of 

factorized convolutions that factorize a standard convolution into a convolution in depth and a 
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convolution of 1 × 1 called convolution point. For MobileNets, deep convolution applies a 

single filter to each input channel. The point convolution then applies a convolution of 1 × 1 to 

combine the convolution outputs in depth. Then the depth convolution with one filter per input 

channel can be written in Equation 5 (Howard, et al., 2017). 

 

Equation 5 

𝐺𝑘,𝑙,𝑚^ =∑𝐾𝑖,𝑗,𝑚^

𝑖,𝑗

⋅ 𝐹𝑘+𝑖−1,𝑙+𝑗−1,𝑚 

 

2.6. MobileNetV2 

 

This network drives the state of the art for mobile-oriented computing vision models, 

significantly reducing the number of operations and memory required, while maintaining the 

same accuracy. The main contribution is a new layer module: the inverted waste with linear 

bottleneck. This module takes as input a compressed low-dimension representation that is first 

expanded to high dimension and filtered with a deep, light convolution (Sandler, Howard, Zhu, 

Zhmoginov, & Chen, 2018). 

 

2.7. Mobile Application Development 

 

The method chosen in our work uses the Java API of TensorFlow Lite (Jacob, et al., 

2018), suitable for Android and IOS application development. TensorFlow Lite is TensorFlow's 

solution for lightweight models for mobile and embedded devices which allows to run a trained 

model on a mobile device. It also makes use of hardware acceleration on Android with the 

Machine Learning APIs (see Figure 5). 
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Figure 6 - TensorFlow Android.  

 

Source: Authors. 

 

This case the application was developed for the Android platform, which ranks thoracic 

images. The goal is to aid in the rapid and accurate diagnosis of Childhood Pneumonia. For this 

is developed a simple and intuitive interface, which consists of two functionalities, the first is: 

the option to search figure 6 which consists of loading an image present on the device, the 

second one is the sorting option, where the most likely classification for the image is displayed. 

The results of this method can be analyzed in the Figures 6, 7. 
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Figure 6 - App classification Normal images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Authors. 

 

  

b- MobileNetV1 b- MobileNetV2 
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Figure 7 - App classification Pneumonia images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Authors. 

 

3. Results and Discussion 

 

In this section we present the results obtained in each stage of the development of this 

paper. We provide a comparison between the pre-trained networks MobileNetV1 and 

MobileNetV2, with a Batch Size parameter set to 30 and 40, respectively. Both networks 

employ Adam as optimizer, 100 epochs in each training and a rate of 0.0001 learning rate. 

MobileNetV1 took 150 minutes to be fully trained, while MobileNetV2 spent 200 minutes to 

complete. 

 

3.1.   Evaluation Metrics 

 

The model precision can be estimated by Equation 6 in which 𝐴𝑐𝑓 is the sum of the 

differences between the actual value𝑦𝑖 and the expected value 𝑦𝑖. This allow us to infer the 

generalization capacity of the network. 

 

b- MobileNetV1 b- MobileNetV2 
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Equation 6 

𝐴𝑐𝑓 =∑(𝑦𝑖 − 𝑦�̂�)

𝑘

𝑖=1

 

 

As a statistical tool, we have the confusion matrix that provides the basis for describing 

the accuracy of the classification as well as characterizing the errors, helping refine the accuracy 

(Saraiva, et al., 2018). The confusion matrix is formed by an array of squares of numbers 

arranged in rows and columns that express the number of sample units of a particular category, 

inferred by a decision rule, compared to the current category. 

The measures derived from the confusion matrix are: total accuracy (used in this work), 

individual class precision, producer precision, user precision and Kappa index, among others. 

The total accuracy is calculated by dividing the sum of the main diagonal of the error 

matrix 𝑥𝑖𝑖, by the total number of samples collected 𝑛, according to Equation 7: 

 

Equation 7 

𝑇 =
∑ 𝑥𝑖𝑖
𝑎
𝑖 1

𝑛
. 

 

To fully evaluate the effectiveness of the models, precision and recall are examined. 

Unfortunately, precision and recall are often in tension. That is, improving precision usually 

reduces recall and vice—versa. 

 

Equation 8 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Equation 9 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

F1 Score is a simple metric, which takes both Precision and Recall into account, so you 

can try to maximize that number to improve your model. This is simply the harmonic mean of 

precision and recall. 
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Equation 10 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

AUC - ROC Curve is a measure of performance for sorting problems in various 

threshold settings. ROC is a probability curve and AUC represent the degree or measure of 

separability (Bowers & Zhou, 2019). 

 

3.2. Results 

 

Before quantization, data amounts for 70.4 MB of storage in MobileNetV1. However, 

after quantization the size decreased considerably, reaching 23.3 MB. Likewise, in 

MobileNetV2, the initial size before quantization was 80.1 MB. Following the same procedure 

applied to MobileNetV1, data was reduced to 25.0 MB (see Table 1). 

 

Table 3 - Model size before and after quantization. 

CNN Size before quantization Size after quantization 

MobileNetV1 70.4 MB 23.3 MB 

MobileNetV2 80.1 MB 25.0 MB 

Source: Authors. 

 

This significant decrease in the model size is crucial for the development of the proposed 

mobile application as it also allows a crucial reduction in the computational cost necessary for 

the application to work on a mobile device. 

Compared with InceptionV3, used in the work of (Kermany, et al., 2018), with the same 

training dataset, we see an improvement in accuracy for both networks. MobileNetV1 had a 

95.4% hit rate, while MobileNetV2 had an accuracy of 94.2%. The InceptionV3 (Kermany, et 

al., Identifying medical diagnoses and treatable diseases by image-based deep learning, 2018) 

presented an accuracy of 92.8%. This is a strong indication of the benefits of   data quantization 

compression from pre-trained neural networks applied in the area of image classification. 

Results are presented in Table 4: 
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Table 4 - Classification Accuracy for Pneumonia × Normal data samples. 

Reference paper Neural Network Accuracy 

This MobileNetV1 95.4% 

This MobileNetV2 94.2% 

(Kermany, et al.,  2018) InceptionV3 92.8% 

Source: Authors. 

 

Moreover, these preliminary results encouraged us think of an efficient Android 

application, with a simple and intuitive user interface, capable of performing thoracic images 

classification for normal and pneumonia breast images. We aim at ease of use, mobility, 

accuracy of classification under low computational cost and energy constraints. 

Table 5 shows quantitative results for the classification between Normal and Pneumonia 

data samples for the assessed metrics. The values were calculated after the quantization step, 

which for them MobileNetV1 had better performance compared to MobileNetV2, these results 

are obtained after the quantization method, where the two models had an accuracy of more than 

94% in the data. of test. With this, it can be noted that the models performed well compared to 

other works, such as. (Kermany, et al., 2018) (Dittimi & Suen, 2019). 

 

Table 5 - Performance Evaluation after quantization for the proposed metrics. 

CNN Accuracy ROC AUC Kappa Recall Precision F1 Score 

MobileNetV1 95.4% 94.1% 88.3% 95.8% 94.5% 95.6% 

MobileNetV2 94.2% 93.9% 87.4% 97.9% 93.1% 95.5% 

Source: Authors. 

 

The Figures 6 and 7 show the mobile application interface model used in this paper, 

which demonstrates the efficiency of each pre-trained network used. In the tests performed, 

MobileNetV1 stands out over MobileNetV2, achieving an improvement of 2.5% and 3.1% in 

the Normal and Pneumonia class, respectively. 

Figure 8 illustrate the training history of the proposed networks. It can be seen that the 

test accuracy of both models during the training is much larger than the training accuracy. 

Hence, it is possible to perceive the generalization power of the models when they are tested. 
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Figure 8 - Training progression MobileNetV1 and MobileNetV1. 

 

 

 

 

 

 

 

 

Source: Authors. 

 

Figures 9 exhibit the confusion matrices for the classification. The results are good if 

compared with those of. (Kermany, et al., 2018) (Dittimi & Suen, 2019). 

 

Figure 9 - Confusion Matrix MobileNetV1 and MobileNetV2. 

 

 

 

 

 

 

 

 

 

 

Source: Authors. 

 

4. Conclusion 

 

This paper proposed a mobile application for the classification of x-ray images 

comprising normal and diseased images (pneumonia). We employed two pre-trained neural 

networks, MobileNetV1 and MobileNetV2, with learning transfer strategies together with 

quantization technique. We showed that the compression, result of the quantization process on 

b- MobileNetV1 b- MobileNetV2 

b- MobileNetV1 b- MobileNetV2 
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both MobileNetV1 and MobileNetV2 led to a substantial reduction in amount of data to be 

processed and, therefore, the possibility to efficiently run the classification process on a mobile 

device.  

The mobile application also presents a simple and intuitive user interface and is capable 

of classifying thoracic images into either normal and abnormal (pneumonia) with an accuracy 

up to 95.4% and 94.2% for MobileNetV1 and MobileNetV2, respectively. This is an 

improvement over a similar method (Kermany, et al., 2018) with 92.8% accuracy. As future 

work, it is intended to carry out a classification with more classes, classifying the type of 

Pneumonia, which may be viral, bacterial or viral caused by Covid19. 
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