Micronutrient deficiency affects the development of the seedlings of the cagaita, a Myrtaceae typical of the Brazilian Cerrado

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.10209

Keywords:

Eugenia dysenterica DC.; Nutrient; Hydroponics; Growth; Nutrient stress.

Abstract

Cagaita (Eugenia dysenterica DC.) plants are highly dependent on the micronutrient iron during their early development stages. Given this, we tested the hypothesis that initial seedling development is affected by a lack of specific micronutrients. We planted seedlings of this species in standard hydroponic solution, and in individual treatments, in which B, Cu, Fe, Mn, Zn or Mo were omitted. The development of symptoms of micronutrient deficiency in response to the different treatment solutions was monitored visually for 120 days after transplantation, and growth parameters and the content of different nutrients in the plant tissue were determined. The deficiency of the micronutrient Mo was the treatment with the greatest effect on seedling growth. The most commonly observed symptoms of nutrient deficiency were chlorosis and necrosis (Cu and Zn deprivation) and impaired root hair development (Fe and Cu deprivation). Overall, Fe was the micronutrient that accumulated most in the stems and roots of the seedlings exposed to the standard nutrient solution, which confirms the importance of the availability of this nutrient in the initial stages of seedling development for the production of healthy cagaita plants, with greater viability.

References

Araujo, F. R. R., Viegas, I. J. M., Cunha, R. L. M., Vasconcelos, W. L. F. (2018). Nutrient omission effect on growth and nutritional status of assai palm seedlings. Pesquisa Agropecuária, 46, 374-382.

Asad, S. A., Maome, D., Farooq, M., Afzal, A., Broadley, M., Young, S., West, H. (2015). Anthocyanin production in the hyperaccumulator plant Noccaea caerulescens in response to herbivory and zinc stress. Acta Physiologiae Plantarum, 37, 1715.

Barbedo, J. G. A. (2019). Detection of nutrition deficiencies in plants using proximal images and machine learning: A review. Computers and Eletronics in Agriculture, 162, 482-492.

Bashir, K., Ishimaru, Y., Nishizawa, N. K. (2011). Identification and characterization of the major mitochondrial Fe transporter in rice. Plant Signaling & Behavior, 6, 1591–1593.

Bashir, K., Rasheed, S., Kobayashi, T., Seki, M., Nishizawa, N.K. (2016). Regulating subcellular metal homeostasis: the key to crop improvement. Frontiers in Plant Science, 7, 1192.

Bessa, L. A., Vitorino, L. C., Silva, F. G. (2019). Macronutrient omission affects the seedling performance of Eugenia dysenterica DC, an important fruiting species of the Cerrado biome. Journal of Agricultural Science, 11, 8-22.

Bessa, L. A., Moreira, M. A., Silva, F. G., Mota, C. S., Vitorino, L. C. (2016). Growth, nutrient concentration and principal component analysis of Cagaita (Eugenia dysenterica DC.) seedlings grown in nutrient solution. Australian Journal of Crop Science, 10, 425-432.

Bessa, L. A., Silva, F. G., Moreira, M. A., Teodoro, J. P. R., Soares, F. A. L. (2013a). Characterization of nutrient deficiency in Hancornia speciosa Gomes seedlings by omitting micronutrients from the nutrient solution. Revista Brasileira de Fruticultura, 35, 616-624.

Bessa, L. A., Silva, F. G., Moreira, M. A., Teodoro, J. P. R., Soares, F. A. L. (2013b). Growth and nutrient accumulation of Anacardium othonianum Rizz. seedlings grown in nutrient solution. Chilean Journal of Agricultural Research, 73, 301-308.

Briat, J. F., Dubos, C., Gaymard, F. (2015). Iron nutrition, biomass production, and plant product quality. Trends in Plant Science, 20, 33-40.

Camilo, Y. M. V., Souza, E. R. B., Vera, R., Naves, R. V. (2014). Caracterização de frutos and seleção de progênies de cagaiteiras (Eugenia dysenterica DC.). Científica, 42, 1-10.

Connorton, J. M., Balk, J., Rodríguez-Celma, J. (2017). Iron homeostasis in plants – a brief overview. Metallomics, 9, 813-823.

Duy, D., Stübe, R., Wanner, G., Philippar, K. (2011). The chloroplast permease PIC1 regulates plant growth and development by directing homeostasis and transport of iron. Plant Physiology, 155, 1709–1722.

Epstein, E., Bloom, A. J. (2006). Nutrição mineral de plantas: princípios and perspectivas. Londrina: Editora Planta, 403p.

Giehl, R. F. H., Meda, A. R., Wire, N. V. (2009). Moving up, down, and everywhere: signaling of micronutrients in plants. Current Opinion in Plant Biology, 12, 320-327.

Hoagland, D. R., Arnon, D. I. (1950). The water culture methods for growing plants without soil. California Agriculture Experiment Station: Berkeley, CA, USA.

Kulcheski, F. R., Côrrea, R., Gomes, I. A., Lima, J. C., Margis, L. R. (2015). NPK macronutrients and microRNA homeostasis. Frontiers in Plant Science, 6, 1-18.

Malavolta, E. (1997). Avaliação do estado nutricional das plantas princípios and aplicações. 2. ed. Piracicaba: Associação Brasileira para Pesquisa da Potássio and do Fosfato. 319 p.

Moraes, L. M. F., Lana, R. M. Q., Mendes, C., Mendes, E., Monteiro, A., Alves, J. F. (2008). Redistribuição de molibdênio aplicado via foliar em diferentes épocas na cultura da soja. Ciência e Agrotecnologia, 32, 1496-1502.

Martins, H. D., Perfeito, D. G. de A., Silva, A. R. da, Peixoto, N. (2017). Characterization and study of the physical stability of mangaba and cagaita's mixed juice. Revista de Agricultura Neotropical, 4, 76-80.

Pourcel, L., Iran, N. G., Koo, A. J. K., Bohorquez-Restrepo, A., Howe, G. A., Grotewold, E. (2013). A chemical complementation approach reveals genes and interactions of flavonoids with other pathways. The Plant Journal, 74, 383-397.

R CoreTeam. (2018). R: A language and environmental for statistical computing. R Foundation for Statistical Computing, Viena, Austria. URL http://www.R-project.org/.

Reis, A. L., Schmiele, M. (2019). Características and potencialidades dos frutos do Cerrado na indústria de alimentos. Brazilian Journal of Food Technology, 22, e2017150.

Souza, B. P., Silva, E. B., Cruz, M. C. M., Amorim, E. P., Donato, S. L. R. (2016). Micronutrients deficiency on the nutritional status of banana prata seedlings. Revista Brasileira de Fruticultura, 38, e-884.

Stewart, A. J., Chapman, W., Jenkins, G. I., Graham, I., Martin, T., Crozier, A. (2002). The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant, Cell & Environment, 24, 1189-1197.

Takano, J., Wada, M., Ludewig, U., Schaaf, G., Von Wire´n, N., Fujiwara, T. (2006). The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell, 18, 1498-1509.

Tejada-Jimenez, M., Chamizo-Ampudia, A., Llamas, A., Galvan, A., Fernandez, E. (2018). Roles of molybdenum in plants and improvement of its acquisition and use efficiency. In: plant micronutrient use efficiency - Molecular and genomic perspectives in crop plants. p. 137-159.

Vert, G. N., Dédaldéchamp, F., Gaymard, F., Guerinot, M. L., Briat, J. F., Curie, C. (2002). IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell, 14, 1223-33.

Viégas, I. J. M., Galvão, J. R., Santos, C. R. C., Matos, G. S. B., Silva, D. A. S., Galate, R. S., Ribeiro, F. O. (2018). Growth and symptoms of deficiency of micronutrients in young plants of jute. Bioscience Journal, 34, 131-140.

Vigani, G., Zocchi, G., Bashir, K., Philippar, K., Briat, J. F. (2013). Signals from chloroplasts and mitochondria for iron homeostasis regulation. Trends in Plant Science, 18, 305-311.

Downloads

Published

29/11/2020

How to Cite

BESSA, L. A. .; VITORINO, L. C. .; SILVA, F. G. . Micronutrient deficiency affects the development of the seedlings of the cagaita, a Myrtaceae typical of the Brazilian Cerrado. Research, Society and Development, [S. l.], v. 9, n. 11, p. e65391110209, 2020. DOI: 10.33448/rsd-v9i11.10209. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/10209. Acesso em: 19 apr. 2024.

Issue

Section

Agrarian and Biological Sciences