Production of mycelial biomass and lignocellulolytic enzymes of Pleurotus spp. in liquid culture medium




Basidiomycota; Cellulase; Culture medium; Laccase; Oyster mushroom; Xylanase.


Pleurotus spp. are fungi capable of degrading lignocellulose material due to the excretion of enzymes with different industrial applications. This study aimed to investigate the influence of culture media on the production of mycelial biomass and the activity of laccase, cellulases, and xylanase of Pleurotus spp. Pleurotus citrinopileatus U16-23, P. djamor U16-20, U16-25, and U16-28, P. eryngii U16-30, P. ostreatus U16-22, and P. pulmonarius U16-21 were grown for 12 days at 28 ºC in malt extract medium (EM-20 g L-1), defined medium (MD glucose 10 g L-1 and yeast extract 2 g L-1), or in sugarcane bagasse (BC) medium equal to MD, but replacing glucose with bagasse (50 g L-1). The greatest growth occurred in the medium EM and P. djamor U16-25 was the strain that generated the greatest biomass (7.5 ± 0.1 g L-1). Most strains showed higher laccase activity in the MD medium and the greatests activities were P. djamor U16-25 (22243 ± 745 U L-1), and P. pulmonarius (20924 ± 46 U L-1). P. citrinopileatus and P. djamor U16-25 did not produce cellulases, but P. djamor U16-20 and P. eryngii produced the greatest cellulase activities in EM and MD media. All strains produced xylanase, and the highest activities were observed in the EM medium and P. djamor U16-28 (67154 ± 1597 U L-1) was the best producer. Pleurotus djamor U16-25 excelled as a producer of laccase and cellulase-free xylanase, revealing the potential for application in the paper and cellulose industry.


Anugraha, S., Swaminathan, T., Swaminathan, D., Meyyappan, N., & Parthiban, R. (2016). Enzymes in Platform Chemical Biorefinery. In: Brar, S.K.; Sarma, S.J.; Pakshirajan, K. (Eds.) Platform Chemical Biorefinery. Elsevier, pp. 451-469.

Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23(3), 257-270.

Barcelos, M. C., Ramos, C. L., Kuddus, M., Rodriguez-Couto, S., Srivastava, N., Ramteke, P. W., Mishra, P.K., & Molina, G. (2020). Enzymatic potential for the valorization of agro-industrial by-products. Biotechnology Letters, 42, 1799–1827.

BCC Research. Global markets for enzymes in industrial applications. (2018). Recuperado em 14 de Setembro, 2020, de

Bellettini, M. B., Fiorda, F. A., Maieves, H. A., Teixeira, G. L., Ávila, S., Hornung, P. S., Maccari Jr, A., & Ribani, R. H. (2019). Factors affecting mushroom Pleurotus spp. Saudi Journal of Biological Sciences, 26(4), 633-646.

Bettin, F., Cousseau, F., Martins, K., Boff, N. A., Zaccaria, S., da Silveira, M. M., & Dillon, A. J. P. (2019). Phenol removal by laccases and other phenol oxidases of Pleurotus sajor-caju PS-2001 in submerged cultivations and aqueous mixtures. Journal of Environmental Management, 236, 581-590.

Bhardwaj, N., Kumar, B., & Verma, P. (2019). A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresources and Bioprocessing, 6(1), 40.

Cardoso, B. K., Linde, G. A., Colauto, N. B., & Valle, J. S. (2018). Panus strigellus laccase decolorizes anthraquinone, azo, and triphenylmethane dyes. Biocatalysis and Agricultural Biotechnology, 16, 558-563.

Debnath, G., Das, P., & Saha, A. K. (2020). Screening and characterization of extracellular cellulase enzyme produced by wild edible mushroom Pleurotus giganteus. Indian Journal of Natural Products and Resources, 10(3), 195-199.

Elisashvili, V., Kachlishvili, E., Asatiani, M. D., Darlington, R., & Kucharzyk, K. H. (2017). Physiological peculiarities of lignin-modifying enzyme production by the white-rot basidiomycete Coriolopsis gallica strain BCC 142. Microorganisms, 5(4), 73.

Faria, M. G., Valle, J. S., Lopes, A. D., Junior, A. C. G., Dragunski, D. C., Colauto, N. B., & Linde, G. A. (2018). Mycelial bioaccumulation of lithium (Li2CO3) in Pleurotus ostreatus. International Journal of Medicinal Mushrooms, 20(9):901–907.

Federici, F., Fava, F., Kalogerakis, N., & Mantzavinos, D. (2009). Valorisation of agro‐industrial by‐products, effluents and waste: concept, opportunities and the case of olive mill wastewaters. Journal of Chemical Technology & Biotechnology, 84(6), 895-900.

Fernandes, Â., Barros, L., Martins, A., Herbert, P., & Ferreira, I. C. (2015). Nutritional characterisation of Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm. produced using paper scraps as substrate. Food Chemistry, 169, 396-400.

Ferreira, L. F., Aguiar, M., Pompeu, G., Messias, T. G., & Monteiro, R. R. (2010). Selection of vinasse degrading microorganisms. World Journal of Microbiology and Biotechnology, 26(9), 1613-1621.

Gbolagade, J., Sobowale, A., & Adejoye, D. (2006). Optimization of sub-merged culture conditions for biomass production in Pleurotus florida (mont.) Singer, a Nigerian edible fungus. African Journal of Biotechnology, 5(16), 1464-1469.

Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257-268.

Goyal, M., & Soni, G. (2011). Production and characterization of cellulolytic enzymes by Pleurotus florida. African Journal of Microbiology Research, 5(10), 1131-1136.

Grimm, D., & Wösten, H. A. (2018). Mushroom cultivation in the circular economy. Applied Microbiology and Biotechnology, 102(18), 7795-7803.

Hasmann, F. A., Vieira Cortez, D., Pessoa Júnior, A., & Conceição Roberto, I. (2003). Optimization of beta-xylosidase recovery by reversed micelles using response surface methodology. Electronic Journal of Biotechnology, 6(2), 153-160.

Hernández-Domínguez, E. M., Sánchez, C., & Díaz-Godínez, G. (2017). Production of laccases, cellulases and xylanases of Pleurotus ostreatus grown in liquid-state fermentation. Mexican Journal of Biotechnology, 2(2), 169-176.

Hou, H., Zhou, J., Wang, J., Du, C., & Yan, B. (2004). Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye. Process Biochemistry, 39(11), 1415-1419.

Hutterer, C., Kliba, G., Punz, M., Fackler, K., & Potthast, A. (2017). Enzymatic pulp upgrade for producing high-value cellulose out of a Kraft paper pulp. Enzyme and Microbial Technology, 102, 67-73.

Jové, P., Olivella, M. À., Camarero, S., Caixach, J., Planas, C., Cano, L., & de las Heras, F. X. (2016). Fungal biodegradation of anthracene-polluted cork: A comparative study. Journal of Environmental Science and Health, 51(1), 70-77.

Kirsch, L. D. S., Macedo, A. J. P. D., & Teixeira, M. F. S. (2016). Production of mycelial biomass by the Amazonian edible mushroom Pleurotus albidus. Brazilian Journal of Microbiology, 47(3), 658-664.

Knop, D., Yarden, O., & Hadar, Y. (2015). The ligninolytic peroxidases in the genus Pleurotus: divergence in activities, expression, and potential applications. Applied Microbiology and Biotechnology, 99(3), 1025-1038.

Kunjadia, P. D., Sanghvi, G. V., Kunjadia, A. P., Mukhopadhyay, P. N., & Dave, G. S. (2016). Role of ligninolytic enzymes of white rot fungi (Pleurotus spp.) grown with azo dyes. SpringerPlus, 5(1), 1487.

Majeau, J. A., Brar, S. K., & Tyagi, R. D. (2010). Laccases for removal of recalcitrant and emerging pollutants. Bioresource Technology, 101(7), 2331-2350.

Menezes, C. R., Silva, Í. S., Pavarina, É. C., Dias, E. F. G., Dias, F. G., Grossman, M. J., & Durrant, L. R. (2009). Production of xylooligosaccharides from enzymatic hydrolysis of xylan by the white-rot fungi Pleurotus. International Biodeterioration & Biodegradation, 63(6), 673-678.

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428.

Mishra, K. K., Pal, R. S., Arunkumar, R., Chandrashekara, C., Jain, S. K., & Bhatt, J. C. (2013). Antioxidant properties of different edible mushroom species and increased bioconversion efficiency of Pleurotus eryngii using locally available casing materials. Food chemistry, 138(2-3), 1557-1563.

Moreno, A. D., Ibarra, D., Alvira, P., Tomás-Pejó, E., & Ballesteros, M. (2015). A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Critical Reviews in Biotechnology, 35(3), 342-354.

Okal, E. J., Aslam, M. M., Karanja, J. K., & Nyimbo, W. J. (2020). Mini review: Advances in understanding regulation of cellulase enzyme in white-rot basidiomycetes. Microbial Pathogenesis, 147, 104410.

Paik, J., Low, N. H., & Ingledew, W. M. (1991). Malt extract: relationship of chemical composition to fermentability. Journal of the American Society of Brewing Chemists, 49(1), 8-13.

Pereira, A. S., Shitsuka, D. M., Parreira, F. B., & Shitsuka, R. (2018). Metodologia da pesquisa científica [recurso eletrônico[eBook]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de cao_MetodologiaPesquisa-Cientifica.pdf?sequence=1.

Rampinelli, J. R., Silveira, M. L. L., Gern, R. M. M., Furlan, S. A., Ninow, J. L., & Wisbeck, E. (2010). Valor nutricional de Pleurotus djamor cultivado em palha de bananeira. Alimentos e Nutrição, 21(2), 197-202.

Rathore, H., Prasad, S., Kapri, M., Tiwari, A., & Sharma, S. (2019). Medicinal importance of mushroom mycelium: Mechanisms and applications. Journal of Functional Foods, 56, 182-193.

Ravindran, R., Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). A review on bioconversion of agro-industrial wastes to industrially important enzymes. Bioengineering, 5(4), 93.

Ritota, M., & Manzi, P. (2019). Pleurotus spp. cultivation on different agri-food by-products: example of biotechnological application. Sustainability, 11(18), 5049.

Royse, D. J., Baars, J., & Tan, Q. (2017). Current overview of mushroom production in the world. In: Cunha, Z.D., Pardo-Gimenez, A. (Eds.). Edible and Medicinal Mushrooms: technology and applications, John Wiley & Sons, pp. 5-13.

Scheid, S. S., Faria, M. G. I., Velasquez, L. G., do Valle, J. S., Gonçalves, A. C., Dragunski, D. C., Colauto, N.B., & Linde, G. A. (2020). Iron biofortification and availability in the mycelial biomass of edible and medicinal basidiomycetes cultivated in sugarcane molasses. Scientific Reports, 10(1), 1-6.

Sekan, A. S., Myronycheva, O. S., Karlsson, O., Gryganskyi, A. P., & Blume, Y. (2019). Green potential of Pleurotus spp. in biotechnology. PeerJ, 7, e6664.

Shafiq, A., Masood, F., Naseer, R., Naveed, S., Rasool, I. G., & Rahman, A. (2016). Production, purification and characterization of laccase from white rot fungus. Pakistan Journal of Science, 68(3), 259-267.

Sharma, B., Dangi, A. K., & Shukla, P. (2018). Contemporary enzyme based technologies for bioremediation: a review. Journal of Environmental Management, 210, 10-22.

Singh, S. K., Khajuria, R., & Kaur, L. (2017). Biodegradation of ciprofloxacin by white rot fungus Pleurotus ostreatus. 3 Biotech, 7(1), 69.

Souza, G.P.N., Halabura, M.I.W., Avelino, K.V., Costa, M.R., Santana, T.T., Kassem, A.S.S., Marim, R.A., Nunes, M.G.I.F., Colauto, G.A., Colauto, N.B., & Valle, J.S. (2020). Lacase de Agaricus subrufescens cultivado em meio com melaço de cana-de-açúcar promove a descoloração de corantes sintéticos. Research, Society and Development, 9(12), e12391210942.

Subramaniyan, S., & Prema, P. (2000). Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiology Letters, 183(1), 1-7.

Tavares, M. F., Avelino, K. V., Araújo, N. L., Marim, R. A., Linde, G. A., Colauto, N. B., & do Valle, J. S. (2020). Decolorization of azo and anthraquinone dyes by crude laccase produced by Lentinus crinitus in solid state cultivation. Brazilian Journal of Microbiology, 51(1), 99-106.

Umeo, S. H., Souza, G. P. N., Rapachi, P. M., Garcia, D. M., Paccola-Meirelles, L. D., Valle, J. S., Colauto, N.B., & Linde, G. A. (2015). Screening of basidiomycetes in submerged cultivation based on antioxidant activity. Genetics and Molecular Research, 14(3), 9907-9914.

Valle, J. S., Vandenberghe, L. P. S., Santana, T. T., Almeida, P. H., Pereira, A. M., Linde, G. A., Colauto, N.B., & Soccol, C. R. (2014). Optimum conditions for inducing laccase production in Lentinus crinitus. Genetics and Molecular Research, 13(4), 8544-8551.

Valle, J. S., Vandenberghe, L. P. S., Oliveira, A. C. C., Tavares, M. F., Linde, G. A., Colauto, N. B., & Soccol, C. R. (2015). Effect of different compounds on the induction of laccase production by Agaricus blazei. Genetics and Molecular Research, 14(4), 15882-15891.

Várnai, A., Siika-aho, M., & Viikari, L. (2010). Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzyme and Microbial Technology, 46(3-4), 185-193.

Vetvicka, V., Gover, O., Karpovsky, M., Hayby, H., Danay, O., Ezov, N., ... & Schwartz, B. (2019). Immune-modulating activities of glucans extracted from Pleurotus ostreatus and Pleurotus eryngii. Journal of Functional Foods, 54, 81-91.

Yin, C., Fan, X., Liu, C., Fan, Z., Shi, D., Yao, F., Cheng, F., & Gao, H. (2019). The antioxidant properties, tyrosinase and α-glucosidase inhibitory activities of phenolic compounds in different extracts from the golden oyster mushroom, Pleurotus citrinopileatus (Agaricomycetes). International Journal of Medicinal Mushrooms, 21(9).

Yokota, M. E., Frison, P. S., Marcante, R. C., Jorge, L. F., Valle, J. S., Dragunski, D. C., Colauto, N.B., & Linde, G. A. (2016). Iron translocation in Pleurotus ostreatus basidiocarps: production, bioavailability, and antioxidant activity. Genetics and Molecular Research, 15(1), gmr.15017888.

Zaghi Junior, L. L., Bertéli, M. B. D., de Freitas, J. D. S., de Oliveira Filho, O. B. Q., Lopes, A. D., Ruiz, S. P., Valle, J.S., Linde, G.A. & Colauto, N. B. (2020). Five-year cryopreservation at −80° C of edible and medicinal basidiomycetes by wheat grain technique. Journal of Microbiological Methods, 176, 106030.



How to Cite

ARAÚJO, N. L.; AVELINO, K. V.; HALABURA, M. I. W.; MARIM, R. A.; KASSEM, A. S. S.; SANTANA, T. T.; COLAUTO, G. A. L.; COLAUTO, N. B.; VALLE, J. S. do. Production of mycelial biomass and lignocellulolytic enzymes of Pleurotus spp. in liquid culture medium. Research, Society and Development, [S. l.], v. 10, n. 1, p. e6810111406, 2021. DOI: 10.33448/rsd-v10i1.11406. Disponível em: Acesso em: 29 jan. 2023.



Agrarian and Biological Sciences