Nitrous oxide emissions in soils fertilized with pig manure: soil processes and strategies of control and mitigation

Authors

DOI:

https://doi.org/10.33448/rsd-v10i2.12427

Keywords:

Environmental management; N2O; Greenhouse gas emissions; Organic fertilization; Microbial community.

Abstract

Nitrous oxide (N2O) is one of the main gases that contributes to the greenhouse effect. With a Global Warming Potential (GWP) 265 times greater than that of carbon dioxide (CO2), over a 100-year horizon, N2O also has the potential for the depreciation of the ozone layer. The activities related to agriculture and livestock are responsible for approximately 60% of the global anthropogenic emissions of this gas to the atmosphere. In Brazil, the sector corresponds to 37% of total emissions. The objectives of this review article were: (i) To verify which are the main processes involved in N2O emissions in soils fertilized with swine manure; (ii) What are the direct emissions on these soils under different management systems, and; (iii) What are the possible strategies for controlling and mitigating N2O emissions. Therefore, an exploratory and qualitative research of articles was carried out using the following keywords: óxido nitroso’, ‘nitrous oxide’, ‘N2O’, ‘nitrogênio’, ‘nitrogen’, ‘suínos, ‘pig, ‘swine’, ‘dejetos’, ‘manure’ and ‘slurry’. Effects of pig diet, manure treatment systems, presence of heavy metals in the soil and moisture content of manure on N2O emissions were verified. Therefore, we recommend integrated studies of the quantitative and qualitative impacts of the levels and sources of nitrogen in the animals' diets on N2O emissions after the application of these wastes to the soil. We also recommend studies related to the effects of copper and zinc contents added to the soil via swine manure on enzymes that catalyze the biotic denitrification process in the soil.

References

Aguilera, E., Luis Lassaletta, A-C., Josette, G., & Antonio, V. (2013). The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean Climate cropping systems. A Review. Agriculture, Ecosystems and Environment 164: 32–52. 10.1016/j.agee.2012.09.006.

Aita, C. J., Schirmann, S. B., Pujol, S. J., Giacomini, P. Rochette, D. A., Angers, M. H., Chantigny, R., Gonzatto, D. A., & Giacomini, A. D. (2015). Reducing nitrous oxide emissions from a maize-wheat sequence by decreasing soil nitrate concentration: effects of split application of pig slurry and dicyandiamide. European Journal of Soil Science 66 (2): 359–68. 10.1111/ejss.12181.

Amon, T., Barbara, A., Vitaliy, K, Werner, Z., Karl, M., & Leonhard, G (2007). Biogas production from maize and dairy cattle manure-influence of biomass composition on the methane yield. Agriculture, Ecosystems and Environment 118 (1–4): 173–82. 10.1016/j.agee.2006.05.007.

Baggs, E. M., M. Stevenson, M., Pihlatie, A. Regar, H., & Cook, G. C. (2003). Nitrous oxide emissions following application of residues and fertiliser under zero and conventional tillage. Plant and Soil 254 (2): 361–70. 10.1023/A:1025593121839.

Bertora, C., Francesco, A., Laura, Z., Jan, W. G., Gerard, V., & Carlo, G. (2008). Pig slurry treatment modifies slurry composition, N2O, and CO2 emissions after soil incorporation. Soil Biology and Biochemistry 40 (8): 1999–2006. 10.1016/j.soilbio.2008.03.021.

Brasil (2014). Estimativas anuais de emissões de gases de efeito estufa. (http://sirene.mcti.gov.br/documents/1686653/1706227/Estimativasd.pdf/0abe2683-e0a8-4563-b2cb-4c5cc536c336)

Butterbach-Bahl, K., E. M. Baggs, M. Dannenmann, R. Kiese, and S. Zechmeister-Boltenstern (2013). Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B: Biological Sciences 368 (1621): 20130122–20130122. 10.1098/rstb.2013.0122.

Chantigny, M. H., Philippe Rochette, D. A., Angers, Shabtai Bittman, K. B., Daniel Massé, G. B., Nikita, E-H., & Marc-Olivier, G. (2010). Soil nitrous oxide emissions following band-incorporation of fertilizer nitrogen and swine manure. Journal of Environment Quality 39 (5): 1545. 10.2134/jeq2009.0482.

Dambreville, C., Thierry, M., & Jean, C. G. (2008). N2O emission in maize-crops fertilized with pig slurry, matured pig manure or ammonium nitrate in Brittany. Agriculture, Ecosystems and Environment 123 (1–3): 201–10. 10.1016/j.agee.2007.06.001.

De Conti, L., Carlos, A., Ceretta, P. A. A., Ferreira, C. R., Lourenzi, E. G., Felipe Lorensini, T. L., Tiecher, C. M., Mylena, G. A., & Gustavo, B. (2016). Soil solution concentrations and chemical species of copper and zinc in a soil with a history of pig slurry application and plant cultivation. Agriculture, Ecosystems and Environment 216. Elsevier B.V.: 374–86. 10.1016/j.agee.2015.09.040.

Decock, C. (2014). Mitigating nitrous oxide emissions from corn cropping systems in the Midwestern U.S.: potential and data gaps. Environmental Science & Technology 48 (8): 4247–56. 10.1021/es4055324.

Dennehy, C., Peadar, G., Lawlor, Y. J., Gillian, E., Gardiner, S., Xie, L. D., & Nghiem, X. Z. (2017). Greenhouse gas emissions from different pig manure management techniques: A Critical Analysis. Frontiers of Environmental Science & Engineering 11 (3), 11. 10.1007/s11783-017-0942-6.

Domeignoz-Horta, L. A., M. Putz, A. Spor, D. Bru, M. C. Breuil, S., & Hallin, L. P. (2016). Non-denitrifying nitrous oxide-reducing bacteria - An effective N2O sink in soil. Soil Biology and Biochemistry 103 (December): 376–79. 10.1016/j.soilbio.2016.09.010.

Doneda, A., Celso, A., Sandro, J. G., Ezequiel, C. C. M., Diego, A. G., Janquieli, S., & Rogério, G. (2012). Fitomassa e decomposição de resíduos de plantas de cobertura puras e consorciadas. Revista Brasileira de Ciencia do Solo 36 (6): 1714–23. 10.1590/S0100-06832012000600005.

Dunmola, A. S., M. Tenuta, A. P. Moulin, P., & Yapa, D. A. L. (2010). Pattern of greenhouse gas emission from a prairie pothole agricultural landscape in Manitoba, Canada. Canadian Journal of Soil Science 90: 243–56. 10.4141/CJSS08053.

FAO (2016). Nitrous oxide emissions in manure management and Manure applied to soils. (http://www.fao.org/faostat/en/#data)

FATMA (2014). Instrução Normativa Nº11 - suinocultura. (http://www.fatma.sc.gov.br/ckfinder/userfiles/arquivos/ins/11/IN%2011%20Suinocultura.pdf〉 (accessed Jun 2017)

Ghimire, R., Urszula, N., Prakriti, B., Augustine, K. O., & Jay, B. N. (2017). Soil organic matter, greenhouse gases and net global warming potential of irrigated conventional, reduced-tillage and organic cropping systems. Nutrient Cycling in Agroecosystems 107 (1): 49–62. 10.1007/s10705-016-9811-0.

Giacomini, S. J., Claúdia, P. J., Celso, A., Segundo Sacramento Urquiaga, and Bruno José Rodrigues Alves (2006). Emissão de óxido nitroso com a aplicação de dejetos líquidos de suínos em solo sob plantio direto. Pesquisa Agropecuaria Brasileira 41 (11): 1653–61. 10.1590/S0100-204X2006001100012.

Girotto, E., et al (2010). Acúmulo e formas de cobre e zinco no solo após aplicações sucessivas de dejeto líquido de suínos. Revista Brasileira de Ciência do Solo 34 (3): 955–65. 10.1590/S0100-06832010000300037.

Gonzatto, R., et al (2013). Volatilização de amônia e emissão de óxido nitroso após aplicação de dejetos líquidos de suínos em solo cultivado com milho. Ciência Rural 43 (9): 1590–96. 10.1590/S0103-84782013000900009.

Gui, M., et al (2017). Effects of heavy metals on aerobic denitrification by strain Pseudomonas Stutzeri PCN-1. Applied Microbiology and Biotechnology 101 (4). Applied Microbiology and Biotechnology: 1717–27. 10.1007/s00253-016-7984-8.

Heil, J., H., & Vereecken, N. B. (2016). A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. European Journal of Soil Science 67 (1): 23–39. 10.1111/ejss.12306.

IPCC (2013). Climate Change 2013: The Physical Science Basis. Climate Change 2013: The Physical Science Basis, no. January 2014: 1–169. 10.1017/CBO9781107415324.

Jongbloed, Age W. 2008. Environmental pollution control in pigs by using nutrition tools age. Revista Brasileira de Zootecnia 37: 215–29.

Kariyapperuma, K. A., et al (2012). Non-growing season nitrous oxide fluxes from an agricultural soil as affected by application of liquid and composted swine manure. Canadian Journal of Soil Science 92 (2): 315–27. 10.4141/cjss2011-059.

López-Fernández, S., J. A. Díez, P. Hernáiz, A. Arce, L. & García-Torres, A. V. (2007). Effects of fertiliser type and the presence or absence of plants on nitrous oxide emissions from irrigated soils. Nutrient Cycling in Agroecosystems 78 (3): 279–89. 10.1007/s10705-007-9091-9.

Loss, A., et al (2015). Carbono orgânico total e agregação do solo em sistema de plantio direto agroecológico e convencional de cebola. Revista Brasileira de Ciencia do Solo 39 (4): 1212–24. 10.1590/01000683rbcs20140718.

Louro, A., et al (2015). Nitrous oxide emissions from forage maize production on a humic cambisol fertilized with mineral fertilizer or slurries in Galicia, Spain. Geoderma Regional 5: 54–63. 10.1016/j.geodrs.2015.03.004.

Meijide, A., et al (2007). Nitrogen oxide emissions from an irrigated maize crop amended with treated pig slurries and composts in a Mediterranean Climate. Agriculture, Ecosystems and Environment 121 (4): 383–94. 10.1016/j.agee.2006.11.020.

Meng, L., Weixin, D., & Zucong, C. (2005). Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil. Soil Biology and Biochemistry 37 (11): 2037–45. 10.1016/j.soilbio.2005.03.007.

Montes, F, R., Meinen, C., Dell, A., Rotz, N., Hristov, J., Oh, G., Waghorn, et al., (2013). SPECIAL TOPICS -- Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. Journal of Animal Science 91: 5070–94. 10.2527/jas2013-6584.

Osada, T, K., & Kuroda, M. Y. (2000). Determination of nitrous oxide, methane, and ammonia emissions from a swine waste composting process. Journal of Material Cycles and Waste Management, 51–56. 10.1007/s10163-999-0018-1.

Pereira A. S., et al. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Philippe, F., & Nicks, B (2015). Review on greenhouse gas emissions from pig houses : production of carbon dioxide , methane and nitrous oxide by animals and manure. Agriculture , Ecosystems and Environment 199: 10–25.

Philippot, L., et al (2007). Ecology of denitrifying prokaryotes in agricultural soil. Advances in Agronomy 96 (January): 249–305. 10.1016/S0065-2113(07)96003-4.

Sanchez-Martín, L. A., et al (2017). Diet management to effectively abate N2O emissions from surface applied pig slurry. Agriculture, Ecosystems and Environment 239 (3): 1–11. 10.1016/j.agee.2016.12.007.

Shcherbak, I., N., & Millar, G. P. R. (2014). Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proceedings of the National Academy of Sciences 111 (25): 9199–9204. 10.1073/pnas.1322434111.

Six, J., et al (2004). The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Change Biology 10 (2): 155–60. 10.1111/j.1529-8817.2003.00730.x.

Suleiman, A. K.A., et al (2016). Temporal variability of soil microbial communities after application of dicyandiamide-treated swine slurry and mineral fertilizers. Soil Biology and Biochemistry 97: 71–82. 10.1016/j.soilbio.2016.03.002.

Syakila, A., & Kroeze, C. (2011). The global nitrous oxide budget revisited. Greenhouse Gas Measurement and Management 1 (1): 17–26. 10.3763/ghgmm.2010.0007.

Tavares, J. M.R., et al (2014). The water disappearance and manure production at commercial growing-finishing pig farms. Livestock Science 169 (C). Elsevier: 146–54. 10.1016/j.livsci.2014.09.006.

Tavares, J. M. R. (2016). Modelagem do consumo de água, produção de dejetos e emissão de gases de efeito estufa e amônia na suinocultura. Tese Doutorado, UFSC, Florianópolis, Brasil.

Thompson, A. G, & Fleming, R. (2003). Emissions of N2O and CH4 during the composting of liquid swine manure. Environmental Monitoring and Assessment, 87–104.

Tiecher, T. L., et al. (2013). Forms and accumulation of copper and zinc in a sandy typic hapludalf soil after long-term application of pig slurry and deep litter. Revista Brasileira de Ciência do Solo 37 (3): 812–24. 10.1590/S0100-06832013000300028.

Velthof, G. L., et al (2005). Gaseous nitrogen and carbon losses from pig manure derived from different diets. Journal of Environmental Quality 34: 698–706. 10.2134/jeq2005.0698.

Zacherl, B., & Amberger, A. (1990). Effect of the nitrification inhibitors Dicyandiamide, Nitrapyrin and Thiourea on Nitrosomonas europaea. Fertilizer Research 22 (1): 37–44. 10.1007/BF01054805.

Zhu, K., et al (2015). Heterogeneity of O2 dynamics in soil amended with animal manure and implications for greenhouse gas emissions. Soil Biology and Biochemistry 84: 96–106. 10.1016/j.soilbio.2015.02.012.

Downloads

Published

14/02/2021

How to Cite

MULLER JÚNIOR, V.; COMIN, J. J. .; FERREIRA, G. W. .; TAVARES, J. M. R.; COUTO, R. da R. .; BELLI FILHO, P. Nitrous oxide emissions in soils fertilized with pig manure: soil processes and strategies of control and mitigation. Research, Society and Development, [S. l.], v. 10, n. 2, p. e23910212427, 2021. DOI: 10.33448/rsd-v10i2.12427. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/12427. Acesso em: 25 apr. 2024.

Issue

Section

Review Article