Influence of the oleic phase and co-surfactant addition in non-ionic microemulsified systems

Authors

DOI:

https://doi.org/10.33448/rsd-v10i2.12902

Keywords:

Isopropyl alcohol; Oil vegetable; Ternary diagrams; Microemulsified systems.

Abstract

Microemulsion is a thermodynamically stable dispersion consisting of an aqueous and an organic phases, both stabilized by surfactant molecules and when in need, co-active surfactant. The nature and structure of these components are essential in the formulation of microemulsified systems. For this, the construction of phase diagrams can be a fundamental tool to characterize the ideal experimental conditions for the existence and operation of microemulsions. Thus, the present work had as objective to obtain a comparison between microemulsions with different compositions through the construction of ternary diagrams, aiming to achieve the most stable system. To produce microemulsified systems, a non-ionic surfactant (Ultranex NP 60), a co-surfactant (Isopropyl Alcohol), two organic phases (pine oil and castor oil) and an aqueous phase (glycerin solution) were used. Also complementing the study, rheological tests of the oleic phases were accomplished, as well as their thermogravimetric analysis. The focus of the reached ternary diagrams was to find the system with the largest Winsor type IV region (microemulsion). It was verified this region had a significant increase by the addition of the co-surfactant in the medium and using a vegetable oil, such as pine oil, since it promotes strong surfactant-oil interactions on the interface.

Author Biography

Fabiola Dias da Silva Curbelo, Universidade Federal da Paraíba

Formada em Engenharia Química pela Universidade de Federal do Rio Grande do Norte, Mestrado e doutorado em Engenharia Química no PPGEQ/DEQ/UFRN.Professora Associado II do Departamento de Engenharia Química/DEQ/UFPB. Chefe do laboratório de Petróleo/Dep. Eng. Química do Centro de Tecnologia da da UFPB. Docente do Programa de Pós-graduação em Engenharia Química da UFPB (PPGEQ).

Trabalha em pesquisas na área de processos de separação e petróleo com ênfase em tensoativos, recuperação avançada de petróleo, fluidos de perfuração, colchões lavadores, lubrificantes, adsorção e tratamento de efluentes. Também trabalha em operações de destilação, absorção, adsorção e extração líquido-líquido. Possui artigos e patentes depositadas nas áreas de atuação mencionadas anterieormente.

References

Cangemi, J. M., Santos, A. M., & Neto, S. C. (2010). A Revolução Verde da Mamona. Química Nova Na Escola: Química e Sociedade, 32 (1).

Daltin, D. (2011). Tensoativos: Química, Propriedades E Aplicações. Blucher.

Ferreira, G. F. D. (2015). Determinação de sistemas microemulsionados para aplicação na indústria de petróleo. Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis. Campina Grande (PB), Editora Relize.

Formariz, T. P., Wanczinski, B. J., Júnior-Silva, A. A., Scarpa, M. V., & Oliveira, A. G. (2004). Biotecnologia de sistemas coloidais aplicável na otimização do efeito terapêutico de fármacos usados no tratamento do câncer. Infarma, Brasília, 16 (1), 44-57.

Garnica, A. I. C., Curbelo, F. D. S., Queiroz, I. X., Araújo. E. A., Sousa, R. P. F., Paiva, E. M., Braga, G. S., & Araújo, E. A. (2020). Desenvolvimento de microemulsões como aditivo lubrificante em fluido de perfuração, Research, Society and Development, 9(7), e212973703.

Howell, B. A., & Ostrander, E. A. (2019). Thermal degradation of flame-retardant compounds derived from castor oil. Journal of Thermal Analysis and Calorimetry, 138, 3961–3975. https://doi.org/10.1007/s10973-019-08355-w

Huang, H., Teng, W., Liu, Q., Zhou, C., Wang, Q., & Wang, X. (2016). Combustion performance and emission characteristics of a diesel engine under low-temperature combustion of pine oil–diesel blends. Energy Conversion and Management, 128, 317-326. http://dx.doi.org/10.1016/j.enconman.2016.09.090

Leung, R., & Shah, D. O. (1987). Solubilization and Phase Equilibria of Water-In-Oil Microemulsion. Journal of colloid and interface science, 12, 321-329. https://doi.org/10.1016/0021-9797(87)90360-2

Lif, A. & Holmberg, K. (2006). Water-In- Diesel Emulsions and Related Systems. Advances in Colloid and Interface Science, 231–239. https://doi.org/10.1016/j.cis.2006.05.004

Machado, J. C. V. (2002). Reologia e escoamento de fluidos: ênfase na indústria do petróleo. Interciência.

Pietrangeli, G. & Quintero, L. (2013). Enhanced Oil Solubilization Using Microemulsion With Linkers. SPE International Symposium on Oilfield Chemistry, SPE 164131, 8-10. https://doi.org/10.2118/164131-MS

Thomas, J. E. (2001). Fundamentos da Engenharia de Petróleo. Interciência: Petrobras.

Winsor, P. A. (1948). Hidrotody, solubilization, and related emulsification processes. Transactions of the Faraday Society, 44(1), 376-398. https://doi.org/10.1039/TF9484400376

Yeboah, A. et al. (2020). Castor oil (Ricinus communis): a review on the chemical composition and physicochemical properties. Food Science and Technology, 1 – 15. http://dx.doi.org/10.1590/fst.19620

Zeng, W. C., Zhang, Z., Gao, H., Jia, L. R., & He, Q. (2012). Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (Cedrus Deodara). Journal of food science, 77(7), C824 - C829. https://doi.org/10.1111/j.1750-3841.2012.02767.x

Downloads

Published

28/02/2021

How to Cite

CURBELO, F. D. da S.; GARNICA, A. I. C. .; NASCIMENTO, B. S. C. .; LEAL, G. L. R. .; TERTULIANO, T. M. .; SILVA, R. R. da . Influence of the oleic phase and co-surfactant addition in non-ionic microemulsified systems. Research, Society and Development, [S. l.], v. 10, n. 2, p. e58410212902, 2021. DOI: 10.33448/rsd-v10i2.12902. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/12902. Acesso em: 16 apr. 2024.

Issue

Section

Engineerings