Electrochemical behavior of stainless steel alloys used for medical and dental applications as a function of exposure to 0.9% NaCl and sterilization





Stainless steel; Alloys; Corrosion; Sodium chloride; Sterilization.


This study evaluated the effect of disinfection procedures and exposure to 0.9% NaCl solution cycles during sterilization, on the electrochemical, physical and chemical properties of different stainless steel alloys used in the biomedical field. Discs of F899 XM16, F899 303, and F899 420B alloys were cleaned with enzymatic detergent followed by 20 cycles of autoclave sterilization. Electrochemical tests were performed including open circuit potential, electrochemical impedance spectroscopy, and potentiodynamic polarization tests in 0.9% NaCl (n=5). Surface characterization was performed using scanning electron microscopy (SEM), energy dispersive spectroscopy, and surface roughness and microhardness both before and after the electrochemical test. Quantitative data were analyzed with a significance level of 5%. The corrosion current density and corrosion potential of the alloys did not present statistical differences. The capacitance values of the three oxide layers, polarization resistance, and impedance of Warburg were similar among the alloys. Considering the topography, surface roughness increased for all alloys in the post-corrosion period. The stainless steel alloys analyzed were negatively affected at the electrochemical behavior, corrosion kinetics, and surface characterization after the 0.9% NaCl solution and the autoclave sterilization cycles, confirming the need for regular exchanges of surgical instruments and drills used in medical and dental implantology.


Agrawal, H., & Sharma, P., Tiwari, P., Taiwade, R. V., Dayal, R. K. (2015). Evaluation of Self-Healing Behaviour of AISI 304 Stainless Steel. Transactions of the Indian Institute of Metals, 68(4):501–511. 10.1007/s12666-014-0467-7.

Allsobrook, O. F., Leichter, J., Holborrow, D., & Swain, M. (2011). Descriptive study of the longevity of dental implant surgery drills. Clinical implant dentistry and related research, 13(3), 244–254. 10.1111/j.1708-8208.2009.00205.x

Al Jabbari, Y., Fournelle, R., Ziebert, G., Toth, J., & Iacopino, A. (2008). Mechanical behavior and failure analysis of prosthetic retaining screws after long-term use in vivo. Part 2: Metallurgical and microhardness analysis. Journal of prosthodontics: official journal of the American College of Prosthodontists, 17(3), 181–191. 10.1111/j.1532-849X.2007.00271.x

Barão, V. A., & Mathew, M. T., Assunção, W. G, Yuan, J. C., Wimmer, M. A., Sukotjo, C. (2011). The role of lipopolysaccharide on the electrochemical behavior of titanium. Journal of Dental Research, 90(5), 613-8. 10.1177/0022034510396880.

Barão, V. A., Mathew, M. T., Assunção, W. G., Yuan, J. C., Wimmer, M. A., & Sukotjo, C. (2012). Stability of cp-Ti and Ti-6Al-4V alloy for dental implants as a function of saliva pH - an electrochemical study. Clinical oral implants research, 23(9), 1055–1062. 10.1111/j.1600-0501.2011.02265.x

Batista Mendes, G. C., Padovan, L. E., Ribeiro-Júnior, P. D., Sartori, E. M., Valgas, L., & Claudino, M. (2014). Influence of implant drill materials on wear, deformation, and roughness after repeated drilling and sterilization. Implant dentistry, 23(2), 188–194. 10.1097/ID.0000000000000028

Beline, T., Garcia, C. S., Ogawa, E. S., Marques, I., Matos, A. O., Sukotjo, C., Mathew, M. T., Mesquita, M. F., Consani, R. X., & Barão, V. (2016). Surface treatment influences electrochemical stability of cpTi exposed to mouthwashes. Materials science & engineering. C, Materials for biological applications, 59, 1079–1088. 10.1016/j.msec.2015.11.045

Beline, T., Marques, I., Matos, A. O., Ogawa, E. S., Ricomini-Filho, A. P., Rangel, E. C., da Cruz, N. C., Sukotjo, C., Mathew, M. T., Landers, R., Consani, R. L., Mesquita, M. F., & Barão, V. A. (2016). Production of a biofunctional titanium surface using plasma electrolytic oxidation and glow-discharge plasma for biomedical applications. Biointerphases, 11(1), 011013. 10.1116/1.4944061

Bonaccorso, A., Tripi, T. R., Rondelli, G., Condorelli, G. G., Cantatore, G., & Schäfer, E. (2008). Pitting corrosion resistance of nickel-titanium rotary instruments with different surface treatments in seventeen percent ethylenediaminetetraacetic Acid and sodium chloride solutions. Journal of endodontics, 34(2), 208–211. doi.org/10.1016/j.joen.2007.11.012

Bullon, B., Bueno, E. F., Herrero, M., Fernandez-Palacin, A., Rios, J. V., Bullon, P., & Gil, F. J. (2015). Effect of irrigation and stainless steel drills on dental implant bed heat generation. Journal of materials science. Materials in medicine, 26(2), 75. 10.1007/s10856-015-5412-8

Ciuccio, R.L., & Garbulha, D., Lopes, F., & Oliveira., M. D. (2011). Children with cochlear implants: communication skills and quality of life. Innovations implant journal: biomaterials and esthetics, 4. 10.1590/S1808-86942012000100003.

Cui, S., & Yin, X., Yu, Q., Liu, Y., Wang, D., & Zhou. F. (2015). Polypyrrole nanowire/TiO2 nanotube nanocomposites as photoanodes for photocathodic protection of Ti substrate and 304 stainless steel under visible light. Corrosion Science, 98:471-477. 10.1016/j.corsci.2015.05.059.

Dalmau, A., & Rmili, W., Richard, C., & Igual–Muñoz. A. (2016). Tribocorrosion behavior of new martensitic stainless steels in sodium chloride solution. Wear, 368–369:146-155. 10.1016/j.wear.2016.09.002.

Dadfar, M., & Salehi, M., Golozar, M. A., & Trasatti, S. (2016). Surface modification of 304 stainless steels to improve corrosion behavior and interfacial contact resistance of bipolar plates. International Journal of Hydrogen Energy, 41:21375-21384.

Fais, L. M., & Pinelli, L. A., Adabo, G. L., et al. (2009). Influence of microwave sterilization on the cutting capacity of carbide burs. Journal of Applied Oral Science, 17(6):584-589. 10.1590/s1678-77572009000600009.

Faverani, L. P., Barao, V. A., Pires, M. F., Yuan, J. C., Sukotjo, C., Mathew, M. T., & Assunção, W. G. (2014). Corrosion kinetics and topography analysis of Ti-6Al-4V alloy subjected to different mouthwash solutions. Materials science & engineering. C, Materials for biological applications, 43, 1–10. 10.1016/j.msec.2014.06.033

Hallab, N., Jacobs, J. J., & Black, J. (2000). Hypersensitivity to metallic biomaterials: a review of leukocyte migration inhibition assays. Biomaterials, 21(13):1301-14. 10.1016/s0142-9612(99)00235-5.

Hedberg, Y. S., & Odnevall Wallinder, I. (2015). Metal release from stainless steel in biological environments: A review. Biointerphases, 11(1), 018901. 10.1116/1.4934628

Hedberg, Y., & Wang, X., Hedberg, J., et al. (2013). Surface-protein interactions on different stainless steel grades: effects of protein adsorption, surface changes and metal release. Journal of Materials science: Materials in Medicine, 24(4):1015-1033. 10.1007/s10856-013-4859-8.

Isac, J., Chandrashekar, B. S., Mahendra, S., Mahesh, C. M., Shetty, B. M., & Arun, A. V. (2015). Effects of clinical use and sterilization on surface topography and surface roughness of three commonly used types of orthodontic archwires. Indian Journal of Dental Research. 26(4):378-383.

Jacobs, J. J., Skipor, A. K., Patterson, L. M., Hallab, N. J., Paprosky, W. G., Black, J., & Galante, J. O. (1998). Metal release in patients who have had a primary total hip arthroplasty. A prospective, controlled, longitudinal study. The Journal of bone and joint surgery. American volume, 80(10), 1447–1458. 10.2106/00004623-199810000-00006

Jin-long, L.V., & Hong-yun., L. (2012). Influence of tensile pre-strain and sensitization on passive films in AISI 304 austenitic stainless steel. Materials Chemistry and Physics, 135:973-978. 10.1016/j.matchemphys.2012.05.086.

Jorge, J. R., & Barao, V. A., Delben, J. A., Assuncao, W. G. (2013). The role of implant/abutment system on torque maintenance of retention screws and vertical misfit of implant-supported crowns before and after mechanical cycling. The International Journal of Oral & Maxillofacial Implants, 28(2):415-422. 10.11607/jomi.2727.

Kocijan, A., & Merl, D. K., & Jenko, M. (2011). Effect of Mo on interaction between α/γ phases of duplex stainless steel. Corrosion Science, 267:255-268. 10.1016/j.electacta.2018.02.082.

Luo, H., & Su, H., Dong, C., Li. X. (2011). Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution. Applied Surface Science, 258(15):631-639. 10.1016/j.apsusc.2011.06.077.

Mathew, M. T., Barão, V. A., Yuan, J. C., Assunção, W. G., Sukotjo, C., & Wimmer, M. A. (2012). What is the role of lipopolysaccharide on the tribocorrosive behavior of titanium? Journal of the mechanical behavior of biomedical materials, 8, 71–85. https://doi.org/10.1016/j.jmbbm.2011.11.004

McGuire, M. F. (2008). Stainless Steels for Design Engineers, United States of American.

Mishra, S. K., & Chowdhary, R. (2014). Heat generated by dental implant drills during osteotomy-a review: heat generated by dental implant drills. Journal of Indian Prosthodontic Society, 14(2), 131–143. 10.1007/s13191-014-0350-6.

Newbury, D. E., & Ritchie, N. W., (2013). Is Scanning Electron Microscopy/Energy Dispersive X‐ray Spectrometry (SEM/EDS) Quantitative? Scanning, 35:141-168. 10.1002/sca.21041.

Oliveira, M. S., Borges, A. H., Mattos, F. Z., Semenoff, T. A., Segundo, A. S., Tonetto, M. R., Bandeca, M. C., & Porto, A. N. (2014). Evaluation of different methods for removing oral biofilm in patients admitted to the intensive care unit. Journal of international oral health: JIOH, 6(3), 61–64.

Ribeiro, D. V., & Abrantes, J. C. C. (2016). Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach. Construction and Building Materials, 111:98-104. 10.1016/j.conbuildmat.2016.02.047.

Rutala, W. A., & Weber, D. J. (2016). Disinfection and Sterilization in Health Care Facilities: An Overview and Current Issues. Infectious disease clinics of North America, 30(3), 609–637. https://doi.org/10.1016/j.idc.2016.04.00.

Roselino Ribeiro, A. L., Noriega, J. R., Dametto, F. R., & Vaz, L. G. (2007). Compressive fatigue in titanium dental implants submitted to fluoride ions action. Journal of applied oral science: revista FOB, 15(4), 299–304. https://doi.org/10.1590/s1678-77572007000400011.

Sedriks, A.J. (1996). Corrosion of Stainless Steel, (2nd ed.), Wiley-Interscience.

Skale, S., & Doleček, V., Slemnik. M. (2007). Substitution of the constant phase element by Warburg impedance for protective coatings. Corrosion Science, 49(3):1045-1055. 10.1016/j.corsci.2006.06.027.

Shemtov-Yona, K., & Rittel, D. (2016). Fatigue failure of dental implants in simulated intraoral media. Journal of the mechanical behavior of biomedical materials, 62, 636–644. https://doi.org/10.1016/j.jmbbm.2016.05.028.

Sun, R.-j., & Sun, Q.-q., Xie, Y.-h., Dong, P.-x., Chen, Q.-y., & Chen, K.-h. (2016). Enhancing corrosion resistance of 7150 Al alloy using novel three-step aging process. Transactions of Nonferrous Metals Society of China, 26(5):1201-1210. 10.1016/S1003-6326(16)64192-4.

Tsaousis, K. T., & Werner, L., Perez, J. P., et al. (2016). Comparison of different types of phacoemulsification tips. I. Quantitative analysis of elemental composition and tip surface microroughness. Journal of Cataract and Refractive Surgery, 42(9):1345-1352. 10.1016/j.jcrs.2016.02.052.

Valois, C. R., & Silva, L. P., & Azevedo, R. B. (2008). Multiple autoclave cycles affect the surface of rotary nickel-titanium files: an atomic force microscopy study. Journal of Endodontics, 34(7):859-62. 10.1016/j.joen.2008.02.028.

Virtanen, S., Milosev, I., Gomez-Barrena, E., Trebse, R., Salo, J., & Konttinen, Y. T. (2008). Special modes of corrosion under physiological and simulated physiological conditions. Acta biomaterialia, 4(3), 468–476. https://doi.org/10.1016/j.actbio.2007.12.003.

Wilson, A. J., & Nayak, S. (2016). Disinfection, sterilization and disposables. Anaesthesia & Intensive Care Medicine, 17, 475-479. 10.1016/j.mpaic.2016.07.002.

Xin, X. Z., & Chen, J., Xiang, N., Gong, Y., & Wei, B. (2014). Surface characteristics and corrosion properties of selective laser melted Co-Cr dental alloy after porcelain firing. Dental Materials, 30(3):263-70. 10.1016/j.dental.2013.11.013.




How to Cite

SOUSA, C. A. de; DANIELETTO-ZANNA, C. F.; BELINE, T.; FERREIRA, G. Z.; FAVERANI, L. P.; BARÃO, V. A. R.; ASSUNÇÃO, W. G. Electrochemical behavior of stainless steel alloys used for medical and dental applications as a function of exposure to 0.9% NaCl and sterilization. Research, Society and Development, [S. l.], v. 10, n. 5, p. e32810513544, 2021. DOI: 10.33448/rsd-v10i5.13544. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/13544. Acesso em: 2 feb. 2023.



Health Sciences