Fructo-oligosaccharides, hydrolyzed soy protein and yeast (Saccharomyces sp.) extract as potential cryoprotectans in gluten-free frozen dough and bread quality.

Authors

DOI:

https://doi.org/10.33448/rsd-v10i3.13556

Keywords:

Breadmaking; Yeast; Fermentation; Texture; Desirability; Celiac disease.

Abstract

People with celiac disease, wheat allergy, and non-celiac gluten sensitivity required bakery products without gluten. However, gluten-free bread has a high rate of starch retrogradation during shelf life, resulting in loss of softness in the bread crumbs. The inclusion of frozen doughs for gluten-free bread can provide a feasible solution to increase product supply with high technological and sensory quality, providing fresh bread with uniform characteristics. The biggest challenge in the frozen dough for gluten-free bread is related to the high amount of water added to the dough (70-120 % - flour basis) because the ice crystals formed during the freezing step can cause damage to yeast. The use of cryoprotectants in the dough is an alternative for preserving yeast during freezing and cold chain maintenance. This study aimed to evaluate the behavior of fructo-oligosaccharide, hydrolyzed soy protein, and yeast extract as a cryoprotectant in the gluten-free frozen dough and the evaluation of bread quality. Through the Response Surface Methodology, using a Simplex-Centroid Mixture Design, the cryoprotectants were evaluated up to a concentration of 5 % (flour basis) with freezing of the dough for 7 days at -18 °C. The results showed that with the use of cryoprotectants, there was an increase in volume increase of the doughs, in the specific volume of the bread, and the softness of the crumb. The use of 69 % fructo-oligosaccharide and 31 % hydrolyzed soy protein, without the yeast extract, was considered as the optimal formulation for the tested cryoprotectants, with a probability of 79.60 % of success obtained by the desirability function. These levels promoted a better biopreservation of yeast fermentation power and resulting in an improved crumb softness and specific volume at 46 and 40 %, respectively, compared to the standard sample.

References

AACCI. (2010). American Association of Cereal Chemists International. Approved Methods of American Association of Cereal Chemists. 11th ed. AACC, St. Paul.

Arslain, K., Gustafson, C. R., Baishya, P., Rose, D. J. (2021). Determinants of gluten-free diet adoption among individuals without celiac disease or non-celiac gluten sensitivity. Appetite, 156, 104958., 1-8. https://doi.org/10.1016/j.appet.2020.104958 .

Bender, D., Schönlechner, R. (2020). Innovative approaches towards improved gluten-free bread properties. Jounal of Cereal Science, 91, 102904,1-8 . https://doi.org/10.1016/j.jcs.2019.102904.

Bhattacharya, S. (2018). Cryoprotectants and their usage in cryopreservation process. In: Bozkurt, Y. (Ed.). Biomedical and Biological Sciences, IntechOpen.

Brasil. (2003). Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Lei nº 10.674, de 16 de maio de 2003. Obriga que os produtos alimentícios comercializados informem sobre a presença de glúten, como medida preventiva e de controle da doença celíaca. Diário Oficial da União, Poder Executivo, Brasília, DF, 19 de maio de 2003. Seção 1, página 1.

Brites, L. T. G. F., Schmiele, M., Steel, C. J. (2018). Gluten-Free bakery and pasta products. In: Holban, A. M., Grumezescu, A. M. (Eds.). Alternative and replacement foods. Academic Press.

Cabanillas, B. (2019). Gluten-related disorders: Celiac disease, wheat allergy, and nonceliac gluten sensitivity. Critical Reviews in Food Science and Nutrition, 60, 2606-2621.

Catassi, G. N., Naspi, L., Catassi, C. (2021). Non-Celiac Gluten Sensitivity. In: Weiss, G. A. (Ed.). Diagnosis and Management of Gluten-Associated Disorders. Springer.

Chen, G., Jansson, H., Lustrup, K. F., Swenson, J. (2012). Formation and distribution of ice upon freezing of different formulations of wheat bread. Journal of Cereal Science, 55, 279-284.

Chen, X., Wu, J-H., Li, L., Wang, S-Y. (2017). The cryoprotective effects of antifreeze peptides from pigskin collagen on texture properties and water mobility of frozen dough subjected to freeze-thaw cycles. European Food Research Technology, 243, 1149-1156.

Čukelj, N., Novotni, D. (2018). Freezing of bread. In: Ferranti, P, Berry, E. M., & Jock, A. R. (Eds.). Encyclopedia of Food Security and Sustainability, Elsevier.

Derringer, G., Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12, 214-219. https://doi.org/10.1080/00224065.1980.11980968.

Ding, X., Zhang, H., Wang, L., Qian, H., Qi, X., Xiao, J. (2015). Effect of barley antifreeze protein on thermal properties and water state of dough during freezing and freeze-thaw cycles. Food Hydrocolloids, 47, 32-40. https://doi.org/10.1016/j.foodhyd.2014.12.025.

Fellows, P. J. (2016). Food processing technology: principles and practice. 4th ed. Woodhead Publishing, Cambridge, 1152p.

Franco, A. W., Silva, A. F. (2016). Pão sem glúten: Busca por novos produtos. Revista Processos Químicos, 20, 173-190. [Gluten free bread: Search for new products. Chemical Processes Magazine, 20, 173-190. https://doi.org/10.19142/rpq.v10i20.363.

Halagarda, M. (2017). Effects of trehalose and dough additives incorporating enzymes on physical characteristics and sensory properties of frozen savory Danish dough. LWT - Food Science and Technology, 86, 603-610. https://doi.org/10.1016/j.lwt.2017.08.048.

He, Y., Guo, J., Ren, G., Cui, G., Han, S., Liu, J. (2020). Effects of Konjac glucomannan on the water distribution of frozen dough and corresponding steamed bread quality. Food Chemistry, 330, 1-7, 127243. https://doi.org/10.1016/j.foodchem.2020.127243.

James, C., Purnell, G., James, J. S. (2015). A review of novel and innovative food freezing technologies. Food and Bioprocess Technology, 16, 1616-1634. Retrieved from https://link.springer.com/article/10.1007/s11947-015-1542-8.

Kenijz, V. N., Nesterenko, A. A., Zayats, M. S. (2019). Cryoprotectants in the technology for the production of frozen bakery products. Food Technology, 4, 23-29.

Kringel, H. D., Filipini, G. S., Salas-Mellado, M. M. (2017). Influence of phosphorylated rice flour on the quality of gluten-free bread. Internacional Journal of Food Science and Technology, 52, 1291-1298. https://doi.org/10.1111/ijfs.13376.

Kunsler, N. L. F. (2017). Estudo da impregnação a vácuo de trealose como crioprotetor em morangos. Dissertação. Universidade Federal do Rio Grande do Sul. Porto Alegre, 2017.

Leonardi, J. G., Azevedo, B. M. (2018). Métodos de conservação de alimentos. Revista Saúde em Foco, 10, 51-61.

Macedo, L. L., Vimercati, W. C., Araújo, S. C. (2020). Fructo-oligosaccharides: nutricional, technological and sensory aspects. Brazilian Journal of Food Technology, 23,1-9, e2019080. http://dx.doi.org/10.1590/1981-6723.08019.

Maity, T., Saxena, A., Raju, P. S. (2017). Use of hydrocolloids as cryoprotectant for frozen foods. Critical Review in Food Science and Nutrition, 58, 420-435.

Meziani, S., Jasniewski, J., Gaiania, C., Ioannou, I., Muller, J-M., Ghoul, M., Desobry, S. (2011). Effects of freezing treatments on viscoelastic and structural behavior of frozen sweet dough. Journal of Food Engineering, 107, 358-365. https://doi.org/10.1016/j.jfoodeng.2011.07.003.

Meziani, S., Kaci, M., Jacquot, M., Jasniewski, J., Ribotta, P., Muller, J-M., Ghoul, M., Desobry, S. (2012). Effect of freezing treatments and yeast amount on sensory and physical properties of sweet bakery products. Journal of Food Engineering, 111, 336-342. https://doi.org/10.1016/j.jfoodeng.2012.02.015.

Motta, J. P. R., Paraguassú-Braga, F. H., Bouzas, L. F., Porto, L. C. (2014). Evaluation of intracellular and extracellular trehalose as a cryoprotectant of stem cells obtained from umbilical cord blood. Cryobiology, 68, 343-348. https://doi.org/10.1016/j.cryobiol.2014.04.007.

Neves, N. A., Gomes, P. T. G., Carmo, E. M. R., Silva, B. S., Amaral, T. N. Schmiele, M. (2020). Sourdough and jaboticaba (Plinia cauliflora) for improvement on pan bread characteristics. Research, Society and Development, 9, e90691110552.

Neves, N. A., Gomes, P. T. G., Schmiele, M. (2020). An exploratory study about the preparation and evaluation of sourdough breads with araticum pulp (Annona crassiflora Mart.) Research, Society and Development, 9, e956998036.

Nunes, M. H. M. P., Aquino, L. A., Santos, L. P. D., Xavier, F. O., Dezordi, L. R., Assunção, N. S. (2015). Yield of the irrigated wheat crop subjected to nitrogen application and to inoculation with Azospirillum brasilense. Brazilian Journal of Soil Science, 39, 174-182. http://dx.doi.org/10.1590/01000683rbcs20150354.

Ortolan, F., Brites, L. T. G., Montenegro, F. M., Schmiele, M., Steel, C. J., Clerici, M. T. P. S., Almeida, E. L., Chang, Y. K. (2015). Effect of extruded wheat flour and gelatinized cassava starch on process and quality parameters of french-type bread elaborated from frozen dough. Food Research International, 76, 402-409. DOI: 10.1016 / j.foodres.2015.07.010.

Pacckia-Doss, P. P., Chevallier, S., Pare, A., Le-Bail, A. (2019). Effect of supplementation of wheat bran on dough aeration and final bread volume. Journal of Food Engineering, 252, 28-35. https://doi.org/10.1016/j.jfoodeng.2019.01.014.

Park, E. Y., Jang, S-B., Lim, S-T. (2016). Effect of fructo-oligosaccharide and isomalto-oligosaccharide addition on baking quality of frozen dough. Food Chemistry, 213, 157-162. DOI: 10.1016 / j.foodchem.2016.06.067.

Pereira, A. S., Shitsuka, D. M., Pereira, F. J., Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Rinaldi, M., Paciulli, M., Caligiani, A., Scazzina, F., Chiavaro, E. (2017). Sourdough fermentation and chestnut flour in gluten-free bread: A shelf-life evaluation. Food Chemistry, 224, 144-152. https://doi.org/10.1016/j.foodchem.2016.12.055.

Rodrigues, M. I., Iemma, A. F. (2014). Experimental design and process optimization. CRC Press, New York, 336p.

Romano, A., Toraldo, G., Cavella, S., Masi, P. (2007). Description of leavening of bread dough with mathematical modelling. Journal of Food Engineering, 83, 142-148. https://doi.org/10.1016/j.jfoodeng.2007.02.014.

Rosa, S. P. L., Cruz, J. D. (2017). Applicability of fruto-oligosaccharides as functional food. Revista de Nutrição e Vigilância em Saúde, [Journal of Nutrition and Health Surveillance], 4, 68-74.

Rosell, C. M., Gómez, M. (2007). Freezing in breadmaking performance: frozen dough and parbaked bread. Food Reviews International, 23, 303-319. DOI: 10.1080 / 87559120701418368.

Roszkowska, A. Pawlick, M., Mroczek, A., Balabuszek, K., Neradko-Iwanicka, B. (2019). Non-celiac gluten sensitivity: a review. Medicina, 55, 222.

Scherf, K. A. (2019). Immunoreactive cereal proteins in wheat allergy, non-celiac gluten/wheat sensitivity (NCGS) and celiac disease. Current Opinion in Food Science, 25, 35-41. https://doi.org/10.1016/j.cofs.2019.02.003.

Schmiele, M., Felisberto, M. H. F., Clerici, M. T. P. S. C., Chang, Y. K. (2017). Mixolab™ for rheological evaluation of wheat flour partially replaced by soy protein hydrolysate and fructooligosaccharides for bread production. LWT - Food Science and Technology, 76, 259-269. https://doi.org/10.1016/j.lwt.2016.07.014

Schmiele, M., Sampaio, U. M., Clerici, M. T. P. S. (2019). Basic principles: Composition and properties of starch. In: Clerici, M. T. P. S. & Schmiele, M. (Eds.). Starches for food application: chemical, technological and health properties. Elsevier. https://doi.org/10.1016/B978-0-12-809440-2.00001-0.

Silveira, M. P., Cardoso, G. P., Schmiele, M. (2019). Estimativa de um padrão de identidade e qualidade de pães de forma comerciais. In: IV JEA - Jornada Regional Sudeste de Engenharia de Alimentos, Diamantina.

Sola, M. C., Oliveira, A. P., Feistel, J. C., Rezende, C. S. M. (2012). Manutenção de microrganismos: conservação e viabilidade. Enciclopédia Biosfera, 8, 1398-1418.

Souza, N. C. O., Oliveira, L. L., Alencar, E. R., Moreira, G. P., Leandro, E. S., Ginani, V. C., Zandonadi, R. P. (2018). Textural, physical, and sensory impacts of the use of green banana puree to replace fat in reduced sugar pound cakes. LWT - Food Science and Technology, 89, 617-623. https://doi.org/10.1016/j.lwt.2017.11.050.

Srinivasan, D., Parkin, K. L. (2017). Fennema’s Food Chemistry. 5th ed. CRC Press, Boca Raton, 1123p.

Tasiguano, B. L., Villarreal, C., Schmiele, M., Vernaza, M. G. (2019). Effect of cooking time of pumpkin (Cucurbita maxima) and the addition of glucose oxidase on the increase of resistant starch in loaf bread. Información Tecnológica, 30, 167-178. http://dx.doi.org/10.4067/S0718-07642019000300167.

Tonetto, C. T. (2018). Melhoria nas características sensoriais de pão isento de glúten a partir da fermentação natural. Dissertação. Universidade Federal de Santa Maria. Santa Maria, 2018.

Wang, X., Pei, D., Teng, Y., Liang, J. (2018). Effects of enzymes to improve sensory quality of frozen dough bread and analysis on its mechanism. Journal of Food Science and Technology, 55, 389-398. DOI: 10.1007 / s13197-017-2950-8.

Wong, S. W. D. (2018). Mechanism and theory in food chemistry. 2nd ed. Springer, California, 450p.

Xavier-Santos, D., Bedani, R., Perego, P., Converti, A., Saad, S. M. I. (2019). L. acidophilus La-5, fructo-oligosaccharides and inulin may improve sensory acceptance and texture profile of a synbiotic diet mousse. LWT - Food Science and Technology, 105, 329-335.

Downloads

Published

21/03/2021

How to Cite

TEOTÔNIO, D. de O.; COSTA, B. A. F. da; GOMES, P. T. G.; SANTOS, M. P.; AMARAL, E. F. G.; CLERICI, M. T. P. S.; LEORO, M. G. V.; SCHMIELE, M. Fructo-oligosaccharides, hydrolyzed soy protein and yeast (Saccharomyces sp.) extract as potential cryoprotectans in gluten-free frozen dough and bread quality. Research, Society and Development, [S. l.], v. 10, n. 3, p. e44510313556, 2021. DOI: 10.33448/rsd-v10i3.13556. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/13556. Acesso em: 18 apr. 2024.

Issue

Section

Agrarian and Biological Sciences