Clinically acceptable values of shear bond strength of orthodontic brackets bonded on enamel: An integrative review




Shear Strength; Dental Enamel; Orthodontic brackets.


Objective: The objective this review was to identify the current range of shear bond strength values (SBS) that are clinically acceptable based on a synthesis of the studies published in 20 years that evaluated the SBS of brackets bonded to dental enamel with emitter diode light photo activators and whether damage to the enamel has been reported after the test. Methodology: A search strategy was developed for the selection of articles published from 1999 to 2019 in the PubMed/MedLine electronic database. In addition to reading the titles, keywords and summaries of the studies found, the studies were also obtained for the reading of the methodologies and identification of the inclusion and exclusion criteria. Results: The search for scientific articles resulted in 580 studies, but only 14 were selected based on the pre-established criteria. Ten presented methodological quality to be included in this integrative review, and the mean SBS found was 14,05 MPa with a standard deviation of ± 6,52 MPa (range from 7,53 to 20,57 MPa). Conclusion: In conclusion, it was observed that the range of shear bond strength values (5,9 to 7,8 MPa) and taken as a parameter by most authors until now is outdated, since higher values of SBS are feasible without, however, causing dental enamel damage after the debonding of the bracket.


Associação Brasileira de Normas Técnicas (2004). Materiais metálicos – máquinas de ensaio estático uniaxial. NBR - ISO 7500-1.

Al-Suleiman, M., Silikas, N., & Watts, D. (2012). Effects of procedures of remineralization around orthodontics bracket bonded by self-etching primer on its shear bond strength. Journal of orthodontic science, 1(3), 63.

Amato, P. A. F., Martins, R. P., dos Santos Cruz, C. A., Capella, M. V., & Martins, L. P. (2014). Time reduction of light curing: Influence on conversion degree and microhardness of orthodontic composites. American Journal of Orthodontics and Dentofacial Orthopedics, 146(1), 40-46.

Årtun, J., & Bergland, S. (1984). Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. American journal of orthodontics, 85(4), 333-340.

Bishara, S. E., & Trulove, T. S. (1990). Comparisons of different debonding techniques for ceramic brackets: An in vitro study: Part II. Findings and clinical implications. American Journal of Orthodontics and Dentofacial Orthopedics, 98(3), 263-273.

Buyuk, S. K., Cantekin, K., Demirbuga, S., & Ozturk, M. A. (2013). Are the low-shrinking composites suitable for orthodontic bracket bonding?. European journal of dentistry, 7(3), 284.

Cantekin, K., & Buyuk, S. K. (2014). Shear bond strength of a new low-shrinkage flowable composite for orthodontic bracket bonding. Journal of Dentistry for Children, 81(2), 63-66.

Degrazia, F. W., Genari, B., Leitune, V. C. B., Arthur, R. A., Luxan, S. A., Samuel, S. M. W., ... & Sauro, S. (2018). Polymerisation, antibacterial and bioactivity properties of experimental orthodontic adhesives containing triclosan-loaded halloysite nanotubes. Journal of dentistry, 69, 77-82.

Demirovic, K., Slaj, M., Spalj, S., Slaj, M., & Kobaslija, S. (2018). Comparison of shear bond strength of orthodontic brackets using direct and indirect bonding methods in vitro and in vivo. Acta Informatica Medica, 26(2), 125.

Ebert, T., Elsner, L., Hirschfelder, U., & Hanke, S. (2016). Shear bond strength of brackets on restorative materials. Journal of Orofacial Orthopedics/Fortschritte der Kieferorthopädie, 77(2), 73-84.

Finnema, K. J., Özcan, M., Post, W. J., Ren, Y., & Dijkstra, P. U. (2010). In-vitro orthodontic bond strength testing: a systematic review and meta-analysis. American Journal of Orthodontics and Dentofacial Orthopedics, 137(5), 615-622.

Gupta, S. P., & Shrestha, B. K. (2018). Shear bond strength of a bracket-bonding system cured with a light-emitting diode or halogen-based light-curing unit at various polymerization times. Clinical, cosmetic and investigational dentistry, 10, 61.

International Standardization Organization (1994). Dental Materials: Guidance on testing of adhesion to tooth structure. Geneva, Switzerland: ISO TR 11405.

Kanashiro, L. K., Robles-Ruíz, J. J., Ciamponi, A. L., Medeiros, I. S., Tortamano, A., & Paiva, J. B. (2014). Influence of different methods of cleaning custom bases on the shear bond strength of indirectly bonded brackets. Journal of orthodontics, 41(3), 175-180.

Lee, H. M., Kim, S. C., Kang, K. H., & Chang, N. Y. (2016). Comparison of the bonding strengths of second-and third-generation light-emitting diode light-curing units. Korean journal of orthodontics, 46(6), 364-371.

Leódido, G. D. R., Fernandes, H. O., Tonetto, M. R., Presoto, C. D., Bandéca, M. C., & Firoozmand, L. M. (2012). Effect of fluoride solutions on the shear bond strength of orthodontic brackets. Brazilian dental journal, 23(6), 698-702.

Lorenzo, M. C., Portillo, M., Moreno, P., Montero, J., Castillo-Oyagüe, R., García, A., & Albaladejo, A. (2014). In vitro analysis of femtosecond laser as an alternative to acid etching for achieving suitable bond strength of brackets to human enamel. Lasers in medical science, 29(3), 897-905.

Mavropoulos, A., Cattani-Lorente, M., Krejci, I., & Staudt, C. B. (2008). Kinetics of light-cure bracket bonding: power density vs exposure duration. American journal of orthodontics and dentofacial orthopedics, 134(4), 543-547.

Mews, L., Kern, M., Ciesielski, R., Fischer-Brandies, H., & Koos, B. (2015). Shear bond strength of orthodontic brackets to enamel after application of a caries infiltrant. The Angle Orthodontist, 85(4), 645-650.

Millett, D. T., & McCabe, J. F. (1996). Orthodontic bonding with glass ionomer cement. The European Journal of Orthodontics, 18(1), 385-399.

Mills, R. W., Jandt, K. D., & Ashworth, S. H. (1999). Dental composite depth of cure with halogen and blue light emitting diode technology. British dental journal, 186(8), 388-391.

Namura, Y., Tsuruoka, T., Ryu, C., Kaketani, M., & Shimizu, N. (2010). Usefulness of orthodontic adhesive-containing fluorescent dye. The European Journal of Orthodontics, 32(6), 620-626.

Neto, C., de Aragão Pedra, J. O., & Miguel, J. A. M. (2004). Uma análise dos testes in vitro de força de adesão em Ortodontia. Rev. dent. press ortodon. ortopedi. facial, 9(4), 44-51.

Raich, A. L., & Skelly, A. C. (2013). Asking the right question: specifying your study question. Evidence-based spine-care journal, 4(2), 68-71.

Reynolds, I. R. (1975). A review of direct orthodontic bonding. British journal of orthodontics, 2(3), 171-178.

Rueggeberg, F. A. (2011). State-of-the-art: dental photocuring—a review. Dental materials, 27(1), 39-52.

Rüger, D., Harzer, W., Krisjane, Z., & Tausche, E. (2011). Shear bond strength after multiple bracket bonding with or without repeated etching. The European Journal of Orthodontics, 33(5), 521-527.

Tavas, M. A., & Watts, D. C. (1979). Bonding of orthodontic brackets by transillumination of a light activated composite: an in vitro study. British journal of orthodontics, 6(4), 207-208.

Tiwari, A., Shyagali, T., Kohli, S., Joshi, R., Gupta, A., & Tiwari, R. (2016). Effect of Dental Chair Light on Enamel Bonding of Orthodontic Brackets Using Light Cure Based Adhesive System: An In-Vitro Study. Acta Informatica Medica, 24(5), 317.

Ulusoy, Ç., Irmak, Ö., Bağiş, Y. H., & Ulusoy, Ö. İ. A. (2008). Temperature rise and shear bond strength of bondable buccal tubes bonded by various light sources. The European Journal of Orthodontics, 30(4), 413-417.

Yoshida, S., Namura, Y., Matsuda, M., Saito, A., & Shimizu, N. (2012). Influence of light dose on bond strength of orthodontic light-cured adhesives. The European Journal of Orthodontics, 34(4), 493-497.




How to Cite

CRUZ, I. D. S. .; TOMAZ, A. F. G. .; MORENO, M. C. .; ARAÚJO, R. M. de .; ALVES, A. C. de M. .; PEREIRA, H. S. G. .; CALDAS, S. G. F. R. Clinically acceptable values of shear bond strength of orthodontic brackets bonded on enamel: An integrative review. Research, Society and Development, [S. l.], v. 10, n. 4, p. e11110413927, 2021. DOI: 10.33448/rsd-v10i4.13927. Disponível em: Acesso em: 29 jan. 2023.



Health Sciences