Preliminary analysis of steelworks residues and their application in a sandy soil

Authors

DOI:

https://doi.org/10.33448/rsd-v10i5.14520

Keywords:

Environmental management; Granulometry; pH; Reactivity.

Abstract

The steel residues application (SR) in sandy soils, under a proper handling management, can result in a benefits range, among which, the soil acidity correction. This study investigated the gralunometric composition of three slags and one exhaustion powder from a steel mill, in the municipality of Marabá-PA, in addition to the ability of soil pH correction. To identify the granulometric fractions were used number 8, 10, 16 and 18 mesh sieves. The pH correction experiment were made in factorial scheme, evaluated 3 doses of each RS (1.5 t ha-1, 2.0 t ha-1 and 2.5 t ha-1) in vases with Neosol, for 60 days. Residues from the steel refining (EAFS, LDS and EAFD) showed a particle size predominantly under 1.00 mm, and promoted pH values above to 7.0. The blast furnace slag obtained domain of particle sizes > 2.00 mm, with 77% of the material retained in the sieves, and their soil disposition promoted similar results to dolomitic limestone, used traditionally to pH correction in acid soils, representing an alternative in soil preparation. Others residues also showed the soil pH correction capacity, although the used dosages proved to be above the ideal, with values above 7 and alkalinity tendency. The necessity of an investigation of EAFS, LDS and EAFD residues dosage are essential to pH soil correction, in order to condition the soil to pH ranges considered ideals (6-6.5).

References

Acosta, J. A., Jansen, B., Kalbitz, K., Faz, A., & Martínez-Martínez, S. (2011). Salinity increases mobility of heavy metals in soils. Chemosphere, 85 (8), 1318-1324. https://doi.org/10.1016/j.chemosphere.2011.07.046

Al-Harahsheh, M., Al-Nu’aiarat, J., Al-Otoom, A., Al-hammouri, A., Al-jabali, H., Al-zoubi, M., & Al’asal, S. A. (2019). Treatments of electric arc furnace dust and halogenated plastic wastes: A review. Journal of Environmental Chemical Engineering, 7 (1), 102856. https://doi.org/10.1016/j.jece.2018.102856

Araújo, E. A., Ker, J. C., Neves, J. C. L., & Lani, J. L. (2012). Qualidade do solo: conceitos, indicadores e avaliação. Revista Brasileira de Tecnologia Aplicada nas Ciências Agrárias, 5 (1),187-206. https://doi.org/10.5777/paet.v5i1.1658

Associação Brasileira de Normas Técnicas [ABNT] (2004). ABNT NBR 10.006: Procedimento para obtenção de extrato solubilizado de resíduos sólidos. Rio de Janeiro: ABNT.

Associação Brasileira de Normas Técnicas [ABNT] (2004). ABNT NBR 10.007: Amostragem de resíduos sólidos. Rio de Janeiro: ABNT.

Bayat, M., & Ghalandarzadeh, A. (2018). Stiffness Degradation and Damping Ratio of Sand-Gravel Mixtures Under Saturated State. International Journal of Civil Engineering, 16, 1261-1277. https: //doi.org/10.1007/s40999-017-0274-8.

Benghalia, Y., Bouafia, A., Canou, J., & Dupla, J. C. (2015). Liquefaction susceptibility study of sandy soils: effect of low plastic fines. Arabian Journal of Geosciences, 8 (2), 605-618. https://doi.org/10.1007/s12517-013-1255-0

Besen, M. R., Esper Neto, M., Cassim, B. M. A. R., Minato, E. A., Inoue, T. T., & Batista, M. A. (2021). Potential Waste Application of Several Industries Segments in Brazilian Agriculture: Effects on Physical and Chemical Soil Properties. Communications in Soil Science and Plant Analysis, 1-24. https://doi.org/10.1080/00103624.2021.1892732

Bolfe, É. L., Victória, D. C., Contini, E., Bayma-Silva, G., Spinelli-Araujo, L., & Gomes, D. (2016). Matopiba em Crescimento agrícola: Aspectos territoriais e socioeconômicos. Revista de política agrícola, 1 (4), 38-62.

Brady, N. C. & Weil, R. R. (2013). Elementos da natureza e propriedades dos solos (3a ed.). Porto Alegre: Bookman.

Brasil, E. C. & Nascimento, E. V. S. (2019). Aproveitamento agronômico de escória de siderurgia de alto-forno na correção da acidez do solo.Belém: Embrapa Amazônia Oriental.

Brevik, E. C., & Hartemink, A. E. (2010). Early soil knowledge and the birth and development of soil science. Catena, 83 (1) 23-33. https://doi.org/10.1016/j.catena.2010.06.011

Buzin, P. J. W. K., Heck, N. C., & Vilela, A. C. F. (2017). EAF dust: An overview on the influences of physical, chemical and mineral features in its recycling and waste incorporation routes. Journal of Materials Research and Technology, 6 (2), 194-202. https://doi.org/10.1016/j.jmrt.2016.10.002

Carvalho, J. L. N., Cerri, C. E. P., Feigl, J., Píccolo, M. C., Godinho, V. P., Herpin, U., & Cerri, C. C. (2009). Conversion of Cerrado into agricultural land in the south-western Amazon: Carbon stocks and soil fertility. Scientia Agricola, 66 (2), 233-241. https://doi.org/10.1590/S0103-90162009000200013

Centeno, L. N., Guevara, M. D. F., Cecconello, S. T., Sousa, R. O.D., & Timm, L. C. (2017). Textura do solo: Conceitos e aplicações em solos arenosos. Revista Brasileira de Engenharia e Sustentabilidade, 4 (1) 31-37.

Chand, S., Paul, B., & Kumar, M. (2015) An Overview of Use of Linz-Donawitz (LD) Steel Slag in Agriculture. Current World Environment, 10 (3), 975-984. https://doi.org/10.12944/CWE.10.3.29

Chenu, C., Roger-Estrade, J., Gascuel, C., & Walter, C. (2018). Soils, a Factor in Plant Production: Agroecosystem. In: Berthelin, J., Valentin, C., & Munch, J. C. Soils as a Key Component of the Critical Zone 1: Functions and Services. (Vol. 1, Chap. 6, pp. 147-162). London: ISTE Ltd. https://doi.org/10.1002/9781119438069.ch6

Colazo, J. C., & Buschiazzo, D. (2015). The Impact of Agriculture on Soil Texture Due to Wind Erosion. Land Degradation and Development, 26 (1), 62-70. https://doi.org/10.1002/ldr.2297

Corrêa, J. C., Bull, L. T., Crusciol, C. A. C., & Moraes, M. H. (2009). Alteração de atributos físicos em Latossolo com aplicação superficial de escória de aciaria, lama cal, lodos de esgoto e calcário. Revista Brasileira de Ciência do Solo, 33 (2), 263-272. http://dx.doi.org/10.1590/S0100-06832009000200004

Crespo-Mendes, N., Laurent, A., Bruun, H. H., & Hauschild, M. Z. (2019). Relationships between plant species richness and soil pH at the level of biome and ecoregion in Brazil. Ecological Indicators, 98, 266-275. https://doi.org/10.1016/j.ecolind.2018.11.004

Cunha, C. S. M. Hernandez, F. F. F., Silva, F. N., Escobar, M. E. O., Magalhães, D. R., & Anjos, D. C. (2014). Relação entre solos afetados por sais e concentração de metais pesados em quatro perímetros irrigados no Ceará. Revista Brasileira de Engenharia Agrícola e Ambiental, 18 (suppl.), 80-85. https://doi.org/10.1590/1807-1929/agriambi.v18nsupps80-s85

Das, S., Kim, G. W., Hwang, H. Y., Verma, P. P., & Kim, J. P. (2019). Cropping with slag to address soil, environment, and food security. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01320

Deus, A. C. F. & Büll, L. T. (2013). Eficiência de escórias de siderurgia na cultura do feijoeiro em sistema de semeadura direta. Ciência Rural, 43 (10), 1783-1789. https://doi.org/10.1590/S0103-84782013005000120.

Deus, A.C.F., Büll, L. T., Guppy, C. N., Santos, S. M. C., & Moreira, L. L. Q. (2020). Effects of lime and steel slag application on soil fertility and soybean yield under a no till-system. Soil and Tillage Research, 196, 104422. https://doi.org/10.1016/j.still.2019.104422

Donagemma, G. K., Freitas, P. L., Balieiro, F. C., Fontana, A., Spera, S.T., Lumbreras, J. F., Viana, J. H. M., Araújo Filho, J. C., Santos, F. C., Albuquerque, M. R., Macedo, M. C. M., Teixeira, P. C., Amaral, A. J., Bortolon, E., & Bortolon, L. (2016). Characterization, agricultural potential, and perspectives for the management of light soils in Brazil. Pesquisa Agropecuaria Brasileira, 51 (9), 1003-1020. https://doi.org/10.1590/s0100-204x2016000900001

Echart, C. L., & Cavalli-Molina, S. (2001). Aluminum phytotoxicity: effevts, tolerance mechanisms and its genetic control. Ciência Rural, 31, 531–541. https://doi.org/10.1590/S0103-84782001000300030

Empresa Brasileira de Pesquisa Agropecuária [EMBRAPA] (2018). Brazilian Soil Classification System (5a ed). Brasilia: Embrapa.

Esper Neto, M., Coneglian, C. F., Costa, A. C. S., Inoue, T. T., & Batista, M. A (2019). Short-term effects of liming on chemical attributes of tropical sandy soil and soybean (Glycine max L.) yield. Australian Journal of Crop Science, v. 13 (6), 889-894.

Fageria, N. K., & Stone, L. F. (2008). Micronutrient deficiency problems in South America. In Alloway, B. Micronutrient Deficiencies in Global Crop Production (Chap. 10, pp. 245-266). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-6860-7_10

Fernandes, M. M., Carvalho, M. G. C., Araújo, M. R., Melo, F. R., Silva, C. A., Sampaio, F. M. T., & Lobato, M. G. R. (2012). Matéria orgânica e biomassa microbiana em plantios de eucalipto no cerrado piauiense. Floresta e Ambiente, 19 (4), p. 453-459. https://doi.org/10.4322/floram.2012.061

Ferreira, A. O., Sá, J. C. M., Lal, R., Tivet, F., Briedis, C., Inagaki, T. M., Gonçalves, D. R. P., & Romaniw, J. (2017). Macroaggregation and soil organic carbon restoration in a highly weathered Brazilian Oxisol after two decades under no-till. Science of the Total Environment, 621 (2017), 1559-1567. https://doi.org/10.1016/j.scitotenv.2017.10.072

Fryrear, D. W. (1990). Wind erosion: mechanics, prediction, and control. In: Singh, R. P., Parr, J. F., & Stewart, B. A. Advances in Soil Science (Vol. 13, pp. 187-199). New York: Springer-Verlag. https://doi.org/10.1007/978-1-4613-8982-8_9

Gil, A. C. (2018). Como elaborar projetos de pesquisa (6a ed). São Paulo: Atlas.

Ghosh, A., & Ghosh, A. K. (2020). Solid Waste Management in Steel Industry-Challenges and Opportunities. In:Ghosh, S. K. (Ed.) Sustainable Waste Management: Policies and Case Studies (Vol. 1, pp. 299-307). Singapore: Springer Nature. https://doi.org/10.1007/978-981-13-7071-7_27

Gomes, H. I., Mayes, W. M., Rogerson, M., Stewart, D. I., & Burke, I. T. (2016). Alkaline residues and the environment: a review of impacts, management practices and opportunities. Journal of Cleaner Production, 112 (4), 3571-3582. https://doi.org/10.1016/j.jclepro.2015.09.111

Gomes, L., Simões, S. J. C., Nora, E. L. D., Sousa-Neto, E. R., Forti, M. C., & Ometto, J. P. H. B. (2019). Agricultural expansion in the Brazilian Cerrado: Increased soil and nutrient losses and decreased agricultural productivity. Land, 8 (1), 1-26. https://doi.org/10.3390/land8010012

Guo, J., Bao, Y., & Wang, M. (2018). Steel slag in China: Treatment, recycling, and management. Waste management, 78, 318-330. https://doi.org/10.1016/j.wasman.2018.04.045

Gwon, H. S., Khan, M. I., Alam, M. A., Das, S., & Kim, P. J. (2018). Environmental risk assessment of steel-making slags and the potential use of LD slag in mitigating methane emissions and the grain arsenic level in rice (Oryza sativa L.). Journal of hazardous materials, 353, 236-243. https://doi.org/10.1016/j.jhazmat.2018.04.023

Hunke, P., Mueller, E. N., Schröder, B., & Zeilhofer, P. (2015). The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology, 8 (6), 1154-1180. https://doi.org/10.1002/eco.1573

Instituto Aço Brasil [IAB] (2014). Relatório de Sustentabilidade 2014. Rio de Janeiro.

Instituto Aço Brasil [IAB] (2020). Folder Aço e Sustentabilidade 2020. https://acobrasil.org.br/site/wp-content/uploads/2019/08/SUSTENTAB_digital_2020-1.pdf

International Business Machines [IBM Corp.] (2019). IBM SPSS statistics for Windows, version 26.0. New York: IBM Corporation.

Jenny, H. (1980). The soil resource: origin and behavior (1a ed.). New York: Springer-Verlag.

Jiang, Y., Ling, T. C., Shi, C., & Pan, S. Y. (2018). Characteristics of steel slags and their use in cement and concrete—A review. Resources, Conservation and Recycling, 136, 187–197. https://doi.org/10.1016/j.resconrec.2018.04.023

Kimio, I. T. O. (2015). Steelmaking Slag for Fertilizer Usage. Nippon Steel Sumitomo Metal Tech Rep, 109, 130-136.

Lal, R. & Stewart, B. A. (2019). Soil and Climate. New York: CRC Press.

Li, Y., Cui, S., Chang, S. X., & Zhang, Q. (2019) Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: a global meta-analysis. Journal of Soils and Sediments, 19 (3), 1393-1406. https://doi.org/10.1007/s11368-018-2120-2

Liubartas, D., de Barros, E. A. S., dos Santos, E. A. M., da Silva, J. E., & Formigoni, A. (2015). A sustentabilidade do aço e das estruturas metálicas. INOVAE - Journal of Engineering and Technology Innovation, 3 (1), 92-110.

Lopes, A. S. & Cox, F. R. (1977). A survey of the fertility status of surface soils under “Cerrado” vegetation in Brazil. Soil Science Society of America Journal, 41 (4), 742-747. https://doi.org/10.2136/sssaj1977.03615995004100040026x

Lopes, A. S. & Guilherme, L. R. (2016). A career perspective on soil management in the Cerrado region of Brazil. In Sparks, D. L. (Ed.) Advances in Agronomy (Vol. 137, Chap.1, pp. 1-72). London: Elsevier Inc. https://doi.org/10.1016/bs.agron.2015.12.004

Lozano-Lunar, A., Silva, P. R., Brito, J., Alvarez, J. I., Fernández, J. M., & Jimenez, J. R. (2019). Performance and durability properties of self-compacting mortars with electric arc furnace dust as filler. Journal of Cleaner Production, 219, 818-832. https://doi.org/10.1016/j.jclepro.2019.02.145

Lumbreras, J. F., Carvalho Filho, A. D., Motta, P. E. F., Barros, A. H. C., Aglio, M. L. D., Dart, R. D. O., & Freitas, P. L. (2015). Aptidão agrícola das terras do Matopiba.Embrapa Solos-Documentos (INFOTECA-E), 179, 49.

Marconi, M. A.; Lakatos, E. M. (2017). Fundamentos de metodologia científica. (8a ed). São Paulo: Atlas.

Meena, V., Dotaniya, M. L., Saha, J. K., Meena, B. P., Das, H., & Patra, A. K. (2020). Sustainable C and N Management Under Metal-Contaminated Soils. In: Datta, R., Meena, R. S., Pathan, S. I., & Ceccherini, M. T. (Eds.) Carbon and Nitrogen Cycling in Soil (pp. 293-336). Singapore: Springer Nature. https://doi.org/10.1007/978-981-13-7264-3_9

Ministério da Agricultura, Pecuária e Abastecimento [MAPA] (2017). Manual de métodos analíticos oficiais para fertilizantes e corretivos. Brasília: MAPA.

Nascimento, A. L., Junio, G. R. Z., Sampaio, R. A., Fernandes, L. A., Carneiro, J. P., & Barbosa, C. F. (2015). Metais pesados no solo e mamoneira adubada com biossólido e silicato de cálcio e magnésio. Revista Brasileira de Engenharia Agrícola e Ambiental, 19 (5), 505-511. https://doi.org/10.1590/1807-1929/agriambi.v19n5p505-511

Nascimento, E. V. S., Brasil, E. C., & Silva, G. R. (2019). Efeito da escória de siderurgia nos atributos químicos de um Latossolo amarelo distrófico em Terra Alta-PA. Revista Agroecossistemas, 11 (1), 97-121. http://dx.doi.org/10.18542/ragros.v11i1.2163

Ning, D., Liang, Y., Liu, Z., Xiao, J., & Duan, A. (2016). Impacts of steel-slag-based silicate fertilizer on soil acidity and silicon availability and metals-immobilization in a paddy soil. PLOS One, 11 (12). https://doi.org/10.1371/journal.pone.0168163

Nogueira, N. O., Tomaz, M. A., Andrade, F. V., Reis, E. F. D., & Brinate, S. V. B. (2012). Influência da aplicação de dois resíduos industriais nas propriedades químicas de dois solos cultivados com café arábica. Revista Ciência Agronômica, 43 (1), 11-21. https://doi.org/10.1590/S1806-66902012000100002

Nolla, A., Korndörfer, G. H., da Silva, T. R. B., & Saraiva, A. (2013). Correção da acidez de um Neossolo submetido à aplicação de carbonato e silicato de cálcio. Journal of Agronomic Sciences, 2 (1), 113-120.

Nunes, Í. L., Afonso, R. L. C., Silva, B. A., Rocha, G. C., Minette, L. J., de Lima, N. N., & Miranda, C. F. M. (2020). Spatial variability of soil physical properties as a result of different tillage systems. Brazilian Journal of Development, 6 (7), 42619-42631. https://doi.org/10.34117/bjdv6n7-034.

Oliveira, F. K. D., & Souza, A. A. L. (2020). Potencial fitorremediador do “feijão-de-porco” submetido a diferentes concentrações de escória de siderurgia. Hollos, 2, 1-13. https://doi.org/10.15628/holos.2020.6609

Oza, E. F., Monaco, P. A. V. L., Santos, M. M. D., Rosado, T. L., Krause, M. R., & Garcia, W. A. (2018). Aproveitamento de escória de siderurgia em substratos alternativos para produção de mudas de pimenteira Dedo-de-moça. Revista Ceres, 65 (1), 104-109. https://doi.org/10.1590/0034-737x201865010014

Özbay, E., Erdemir, M., & Durmuş, H. I. (2016). Utilization and efficiency of ground granulated blast furnace slag on concrete properties - A review. Construction and Building Materials, 105, 423-434. https://doi.org/10.1016/j.conbuildmat.2015.12.153

Ozores-Hampton, M., Stansly, P. A., & Salame, T. P. (2011). Soil chemical, physical, and biological properties of a sandy soil subjected to long-term organic amendments. Journal of Sustainable Agriculture, 35 (3), 243-259. https://doi.org/10.1080/10440046.2011.554289

Pereira, H. S., Gama, A. J. M., Camargo, M. S. D., & Korndorfer, G. H. (2010). Reatividade de escórias silicatadas da indústria siderúrgica. Ciência e Agrotecnologia, 34 (2), 382-390. https://doi.org/10.1590/S1413-70542010000200016

Pereira, H. S., Korndörfer, G. H., Vidal, A. D. A., & Camargo, M. S. D. (2004). Silicon sources for rice crop. Scientia agrícola, 61 (5), 522-528.https://doi.org/10.1590/S0103-90162004000500010

Piatak, N. M., Parsons, M. B., & Seal, R. R. (2015). Characteristics and environmental aspects of slag: A review. Applied Geochemistry, 57, 236-266. https://doi.org/10.1016/j.apgeochem.2014.04.009

Pullin, H., Bray, A. W., Burke, I. T., Muir, D. D., Sapsford, D. J., Mayes, W. M., & Renforth, P. (2019). Atmospheric carbon capture performance of legacy Iron and steel waste. Environ Sci Techno, 53 (16), 9502-9511. https://doi.org/10.1021/acs.est.9b01265.

Ranger, J. (2018). Forest Soils: Characteristics and Sustainability. InBerthelin, J., Valentin, C., & Munch, J. C (Eds.) Soils as a Key Component of the Critical Zone 1: Functions and Services (Vol. 1, Chap. 7, pp. 163-186). London: ISTE Ltd. https://doi.org/10.1002/9781119438069.ch7

Reichardt, K., & Timm, L. C. (2016). Água e sustentabilidade o Sistema solo-planta-atmosfera. Barueri: Manole.

Reichert, J. M., Amado, T. J. C., Reinert, D. J., Rodrigues, M. F., & Suzuki, L. E. A. S. (2016). Land use effects on subtropical, sandy soil under sandyzation/ desertification processes. Agriculture, Ecosystems and Environment, 233, 370-380. https://doi.org/10.1016/j.agee.2016.09.039

Rocha, M. C., Binow, T. D., Raimam, M. P., & Albuquerque, A. R. (2019, Maio). Lixiviação sobre solos tratados com coproduto siderúrgico associado ao comportamento de pH. Anais do Simpósio de gestão do conhecimento e biodiversidade da Flona Tapirapé-Aquiri, Marabá, PA, Brasil. https://pt.scribd.com/document/431322216.

Rodrigues, L. U., & Silva, R. R. (2020). Boron availability in building up fertility in Cerrado Soil of Tocantins. Communications in soil science and plant analysis, 51, (5), 595-603. //doi.org/10.1080/00103624.2020.172937.

Sadek, D. M. (2014). Effect of cooling technique of blast furnace slag on the thermal behavior of solid cement bricks. Journal of Cleaner Production, 79, 134-141. https://doi.org/10.1016/j.jclepro.2014.05.033

Santos, N. G. N., Olszevski, N., Salviano, A. M., Cunha, T. J. F., Giongo, V., & Pereira, J. S. (2019). Granulometric fractions and physical-hydric behavior of sandy soils. Revista Agrarian, Dourados, 12 (45), 318-327. https://doi.org/10.30612/agrarian.v12i45.7687

Scattolin, M., Peuble, S., Pereira, F., Paran, F., Moutte, J., Menad, N., & Faure, O. (2021). Aided-phytostabilization of steel slag dumps: The key-role of pH adjustment in decreasing chromium toxicity and improving manganese, phosphorus and zinc phytoavailability. Journal of Hazardous Materials, 405 (5), 124225. https://doi.org/10.1016/j.jhazmat.2020.124225.

Schaetzl, R. J., & Thompson, M. L. (2015) Soils: Geomorphology and Genesis (2a ed). New York: Cambridge University Press.

Seh-Bardan, B. J., Sadegh-Zadeh, F., Seh-Bardan, E. J., & Wahid, S. A. (2013). Effects of Electric-Arc Furnace Dust Application on Soil Properties, Sorghum Growth, and Heavy-Metal Accumulation. Communications in Soil Science and Plant Analysis, 44, (11), 1674-1683. https://doi.org/10.1080/00103624.2013.783057

Serafim, M. E., Zeviani, W. M., Ono, F. B., Neves, L. G., Silva, B. M., & Lal, R. (2019). Reference values and soil quality in areas of high soybean yield in Cerrado region, Brazil. Soil and Tillage Research, 195, 104362. https://doi.org/10.1016/j.still.2019.104362

Siderúrgica Norte Brasil [SINOBRAS] (2019). Relatório dos resíduos siderúrgicos ano de 2019. Marabá: SINOBRAS.

Siderúrgica Norte Brasil Florestal [SINOBRAS FLORESTAL] (2019). Relatório de fertilidade do solo: Fazenda são bento do Tocantins – TO. Marabá: SINOBRAS.

Silva, M. O., Veloso, C. L., Nascimento, D. L., Oliveira, J., Pereira, D. F., & Costa, K. D. S. (2020). Indicadores químicos e físicos de qualidade do solo. Brazilian Journal of Development, v. 6, n. 7, p. 47838-47855. https://doi.org/10.34117/bjdv6n7-431

Silva, P. L. F., Oliveira, F. P., Borba, J. D. M., Tavares, D. D., Amaral, A. J., & Martins, A. F. (2018). Solos arenosos para sistemas de integração lavoura-pecuária-floresta em Arez, Rio Grande do Norte. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 13 (5), 581.

Sobral, M. F., do Nascimento, C. W., da Cunha, K. P., Ferreira, H. A., Silva, A. J., & Silva, F. B. (2011). Basic slag and its effects on the concentration of nutrients and heavy metals in sugarcane. Revista Brasileira de Engenharia Agrícola e Ambiental, 15 (8), 867-872. https://doi.org/10.1590/S1415-43662011000800015

Sol-Sánchez, M., Castro, J., Ureña, C., & Azañón, J. M. (2016). Stabilisation of clayey and marly soils using industrial wastes: pH and laser granulometry indicators. Engineering Geology, 200, 10–17. https://doi.org/10.1016/j.enggeo.2015.11.008

Stathopoulos, V. N., Papandreou, A., Kanellopoulou, D., & Stournaras, C. J. (2013). Structural ceramics containing electric arc furnace dust. Journal of Hazardous Materials, 262, 91-99. https://doi.org/10.1016/j.jhazmat.2013.08.028

Sumner, M. E., & Noble, A. D. Soil acidification: The world story. In Rengel, Z. (Ed.) Handbook of Soil Acidity (pp.1-28). New York: Marcel Dekker.

Teixeira, C. P., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de Métodos de análise de solo (3a ed.). Brasília: Embrapa.

Teo, P. T., Zakaria, S. K., Salleh, S. Z., Taib, M. A. A., Sharif, N. M., Seman, A. A., Mohamed, J. J., Yusoff, M., Yusoff, A. H., Mohamad, M., Masri, M. N., & Mamat, S. Assessment of Electric Arc Furnace (EAF) Steel Slag Waste’s Recycling Options into Value Added Green Products: A Review. Metals, 10 (10), 1347.https://doi.org/10.3390/met10101347.

Verruijt, A. (2018). An Introduction to Soil Mechanics. Cham: Springer.

Wally, M. S., Bissani, C. A., Santos, V. P., Bortolon, L., Bortolon, E. S. O., & Gianello, C. (2015). Correção da acidez do solo e aporte de metais pesados pela aplicação de escória básica de aciaria. Bioscience Journal, Uberlândia, 31 (1), 135-145. https://doi.org/10.14393/BJ-v31n1a2015-22236

Wan, M., Hu, W., Qu, M., Tian, K., Zhang, H., Wang, Y., & Huang, B. (2019). Application of arc emission spectrometry and portable X-ray fluorescence spectrometry to rapid risk assessment of heavy metals in agricultural soils. Ecological Indicators, 101, 583-594. https://doi.org/10.1016/j.ecolind.2019.01.069

Wang, Y., Ge, L., Chendi, S., Wang, H., Han, J., Guo, Z., & Lu, Y. (2020). Analysis on hydraulic characteristics of improved sandy soil with soft rock. PLoS ONE, 15 (1), 1-13. https://doi.org/10.1371/journal.pone.0227957

Xu, D., Carswell, A., Zhu, Q., Zhang, F., & Vries, W. (2020). Modelling long-term impacts of fertilization and liming on soil acidification at Rothamsted experimental station. Science of the Total Environment, 713, 136249. https://doi.org/10.1016/j.scitotenv.2019.136249

Yong, R. N., Nakano, M., & Pusch, R. (2012). Environmental soil properties and behaviour. Boca Raton: CRC Press.

Downloads

Published

03/05/2021

How to Cite

ROCHA, M. do C. .; DIAS, T. B. .; CHAVES , J. S. .; ALBUQUERQUE , A. R. .; RAIMAM, M. P. . Preliminary analysis of steelworks residues and their application in a sandy soil . Research, Society and Development, [S. l.], v. 10, n. 5, p. e17910514520, 2021. DOI: 10.33448/rsd-v10i5.14520. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/14520. Acesso em: 20 apr. 2024.

Issue

Section

Agrarian and Biological Sciences