The Weissella genus in the food industry: A review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i5.14557

Keywords:

Weissella; Food industry; Metabolism; Ecology; Technological potential; Bacteriocins.

Abstract

The genus Weissella is composed of bacteria classified as Gram-positive, catalase negative, non-spore forming, coccoid morphology or short bacilli. They belong to the group of lactic acid bacteria (LAB), mainly by production of lactic acid from the fermentation of carbohydrates. Weissella species are distributed in different habitats, such as soils, milking machines, sugar cane and some strains with interesting technological features can be isolated from fermented foods, such as cheeses made from raw milk, fermented vegetables and fermented milk.  From the point of view of food technology, some strains have potential in the production of exopolysaccharides, non-digestible oligosaccharides, which is beyond their probiotic potential. Therefore, the bacteria belonging to the genus Weissella might have great technological importance, being also involved in the control of foodborne diseases by production of bacteriocins and hydrogen peroxide. This genus has great potential for use in the food industry.

References

Fakruddin, M., & Mannan, K. S. B. (2013). Methods for Analyzing Diversity of Microbial Communities in Natural Environments. Ceylon Journal of Science (Biological Sciences), 42 (1), 19-33.

Gandra, E. A., Gandra, T. K. V., de Mello, W. S. & da Godoi, H. (2008). Técnicas moleculares aplicadas à microbiologia de alimentos. Acta Scientiarum - Technology, 30 (1), 109–118.

Collins M. D., Samelis, J., Metaxopoulos, J. & Wallbanks, S. (1993). Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. Journal of Applied Bacteriology, 75(6), 595–603.

Niven, C. F. & Evans, J. B. (1956). Species That Produces a Green Discoloration of Cured Meat Pigments. Journal Bacteriology, 758–759.

Garvie, E. I. (1967). The growth factor and amino acid requirements of species of the genus Leuconostoc, including Leuconostoc paramesenteroides (sp. nov.) and Leuconostoc oenos. Journal of General Microbiology, 48(1967), 439–447.

Holzapfel, W. H. & Van Wyk, E. P. (1982). .Lactobacillus kandleri sp. nov., a New Species of the Subgenus Betabacterium, with Glycine in the Peptidoglycan,” Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I. Abt. Originale C: Allgemeine, angewandte und ökologische Mikrobiologie, 3(4), 495–502.

Kandler, O., Schillinger, U. & Weiss, N. (1983). Lactobacillus halotolerans sp.nov., nom.rev. and Lactobacillus minor sp.nov., nom.rev. Systematic and Applied Microbiology, 4(2), 280–285.

Tanasupawat, S., Shida, O., Okada, S. & Komagata. K. (2000). Lactobacillus acidipiscis sp. nov. and Weissella thailandensis sp. nov., isolated from fermented fish in Thailand,” International Journal of Systematic and Evolutionary Microbiology, 50, 1479–1485.

Magnusson, J., Jonsson, H., Schnurer, J. & Roos, S. (2002). Weissella soli sp. nov., a lactic acid bacterium isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 52(3), 831–834.

Björkroth, K. J., Schillinger, U., Geisen, R., Weiss, N., Hoste, B., Holzapfel, H. W., Korkeala, H. J., & Vandamme, P., (2002). Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. International Journal of Systematic and Evolutionary Microbiology, 52 (1), 141–148.

Lee, J.-S., Lee,K. C., Ahn, J.-S., Mheen, T.-IY., Pyun, R. & Park,Y. H. (2002). Weissella koreensis sp . nov ., isolated from kimchi. International Journal of Systematic and Evolutionary Microbiology, 52, 1257–1261.

De Bruyne, K., Camu, N., Lefebvre, K., De Vuyst, L., & Vandamme, P. (2008). Weissella ghanensis sp. nov., isolated from a Ghanaian cocoa fermentation. International Journal of Systematic and Evolutionary Microbiology, 58 (2008), 2721–2725.

Padonou S. W., Schillinger, U., Nielsen, D. S., Franz, C. M. A. P., Hansen, M., Hounhouigan, J. D., Nago, M. C., & Jakobsen, M. Weissella beninensis sp. nov., a motile lactic acid bacterium from submerged cassava fermentations, and emended description of the genus Weissella. International Journal of Systematic and Evolutionary Microbiology, 60 (9), 2193–2198.

De Bruyne, K., Camu, N., De Vuyst, L. & Vandamme, P. (2010). Weissella fabaria sp . nov ., from a Ghanaian cocoa fermentation. International Journal of Systematic and Evolutionary Microbiology, 60 (2010), 1999–2005.

Vela, A. I., Fernández, A., de Quirós, Y. B., Herráez, P., Domínguez, L. & Fernández-Garayzábal, J. F. (2011). Weissella ceti sp. nov., isolated from beaked whales (Mesoplodon bidens). International Journal of Systematic and Evolutionary Microbiology, 61(11), 2758–2762.

Snauwaert, I., Papalexandratou, Z., De Vuyst, L. & Vandamme, P. (2013). Characterization of strains of Weissella fabalis sp. nov. and Fructobacillus tropaeoli from spontaneous cocoa bean fermentations,” International Journal of Systematic and Evolutionary Microbiology, 63(PART 5), 1709–1716.

Tohno, M., Kitahara, M., Inoue, H., Uegaki, R., Irisawa, T., Ohkuma, M., & Tajima, K. (2013). Weissella oryzae sp. nov., isolated from fermented rice grains, International Journal of Systematic and Evolutionary Microbiology, 63 (PART4), 1417–1420.

Oh, S. J., Shin, N., Hyun, D., Kim, P. S., Kim, J. Y., Kim, M., Yun, J., & Bae, J. (2013). Weissella diestrammenae sp. nov., isolated from the gut of a camel cricket (Diestrammena coreana). International Journal of Systematic and Evolutionary Microbiology, 63 (PART8), 2951–2956.

Nisiotou, A., Dourou, D., Filippousi, M.-E., Banilas, G. & Tassou, C. (2014). Weissella uvarum sp. nov., Isolated from wine grapes, International Journal of Systematic and Evolutionary Microbiology, 64 (2014), 3885–3890.

Heo, J., Hamada, M., Cho, H., Weon, H., Kim, J., Hong, S., Kim, S., & Kwon, S., (2019). Weissella cryptocerci sp . nov ., isolated from gut of the insect Cryptocercus kyebangensis. International Journal of Systematic and Evolutionary Microbiology, 69 (7),10–16.

Praet, J., Meeus, I., Cnockaert, M., Houf, K., Smagghe, G. & Vandamme, P. (2015). Novel lactic acid bacteria isolated from the bumble bee gut : Convivina intestini gen. nov., sp. nov., Lactobacillus bombicola sp. nov., and Weissella bombi sp. nov. Antonie van Leeuwenhoek, Journal of Microbiology, 107 (5), 1337–1349.

Lee, S. H., Ku, H. J., Ahn, M. J., Hong, J. S., Lee, S. H., Shin, H., & Lee, J. H. (2015). Weissella jogaejeotgali sp. nov., isolated from jogae jeotgal, a traditional Korean fermented seafood. International journal of systematic and evolutionary microbiology, 65(12), 4674-4681.

Choi, H. J., Cheigh, C. I., Kim, S. B., Lee, J. C., Lee, D. W., Choi, S. W., & Pyun, Y. R. (2002). Weissella kimchii sp. nov., a novel lactic acid bacterium from kimchi. International Journal of Systematic and Evolutionary Microbiology, 52(2), 507-511.

Huys, G., Leisner, J. & Björkroth, J. (2012). The Lesser LAB Gods: Pediococcus, Leuconostoc, Weissella, Carnobacterium, and Affiliated Genera. in Lactic Acid Bacteria, Microbiological and Funcional Aspects. 94–112.

Björkroth, J.A. & Dicks, L. M. T. & Holzapfel, W. H. (2009). Genus III. Weissella Collins, Samelis, Metaxopoulos and Wallbanks 1994, 370VP. Bergey's Manual of Systematic Bacteriology. 3. 643-654.

Björkroth, J., Dicks, L. M. T. & Endo, A. (2014). The genus Weissella, in Lactic Acid Bacteria, Biodiversity and Taxonomy, First., W. H. Holzapfel and B. J. B. Wood, Eds. UK: Wiley Blackwell, pp. 417–421.

Mende, S., Rohm, H. & Jaros, D. (2016). Influence of exopolysaccharides on the structure, texture, stability and sensory properties of yoghurt and related products. International Dairy Journal, 52, 57–71.

Fusco, V., Quero, G. M., Cho, G. S., Kabisch, J., Meske, D., Neve, H., & Franz, C. M. (2015). The genus Weissella: taxonomy, ecology and biotechnological potential. Frontiers in microbiology, 6, 1.

Lynch, K. M., Lucid, A., Arendt, E. K., Sleator, R. D., Lucey, B. & Coffey, A. (2015). Genomics of Weissella cibaria with an examination of its metabolic traits. Microbiology, 161 (December 2014), pp. 914–930.

Torino, M. I., de Valdez, G. F. & Mozzi, F. (2015). Biopolymers from lactic acid bacteria. Novel applications in foods and beverages. Frontiers in Microbiology, 6 (JUL), 1–16.

Zeidan, A. A., Poulsen, V. K., Janzen, T., Buldo, P., Derkx, P. M., Øregaard, G., & Neves, A. R. (2017). Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS microbiology reviews, 41(Supp_1), S168-S200.

Meng, X., Gangoiti, J., Bai, Y., Pijning, T., Van Leeuwen, S. S., & Dijkhuizen, L. (2016). Structure–function relationships of family GH70 glucansucrase and 4, 6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. Cellular and Molecular Life Sciences, 73(14), 2681-2706.

López-Hernández, M., Rodríguez-Alegría, M. E., López-Munguía, A. & Wacher, C. (2017). Evaluatin of Xylan as Carbon Source for Weissella spp., a Predominant Strain in Pozol Fermentation. LWT - Food Science and Technology, 89 (March), 192–197.

Goh, H. F. & Philip, K. (2015). Purification and Characterization of Bacteriocin Produced by Weissella confusa A3 of Dairy Origin. PLoS ONE.

Yu, H. S., Lee, N. K., Choi, A. J., Choe, J. S., Bae, C. H., & Paik, H. D. (2019). Antagonistic and antioxidant effect of probiotic Weissella cibaria JW15. Food science and biotechnology, 28(3), 851-855.

Ayeni, F. A., Sánchez, B., Adeniyi, B. A., de los Reyes-Gavilán, C. G., Margolles, A. & Ruas-Madiedo, P. (2011). Evaluation of the functional potential of Weissella and Lactobacillus isolates obtained from Nigerian traditional fermented foods and cow’s intestine. International Journal of Food Microbiology, 147 (2), 97–104.

Masoud, W., Vogensen, F. K., Lillevang, S., Abu Al-Soud, W., Sørensen, S. J. & Jakobsen, M. (2012). The fate of indigenous microbiota, starter cultures, Escherichia coli, Listeria innocua and Staphylococcus aureus in Danish raw milk and cheeses determined by pyrosequencing and quantitative real time (qRT)-PCR. International Journal of Food Microbiology, vol. 153(1–2), 192–202.

Jawan, R., Kasimin, M. E., Jalal, S. N., Mohd Faik, A. A., Abbasiliasi, S., & Ariff, A., (2019). Isolation, characterisation and in vitro evaluation of bacteriocins-producing lactic acid bacteria from fermented products of Northern Borneo for their beneficial roles in food industry. Journal of Physics: Conference Series. Ser. 1358.

Wouters, D., Grosu-Tudor, S., Zamfir, M. & De Vuyst, L. (2013). Bacterial community dynamics, lactic acid bacteria species diversity and metabolite kinetics of traditional Romanian vegetable fermentations. Journal of the Science of Food and Agriculture, 93 (4), 4749–760.

Juárez-Castelán, C., García-Cano, I., Escobar-Zepeda, A., Azaola-Espinosa, A., Álvarez-Cisneros, Y. & Ponce-Alquicira, E. (2019). Evaluation of the bacterial diversity of Spanish-type chorizo during the ripening process using high-throughput sequencing and physicochemical characterization. Meat Sci. 150, 7–13.

Tenea, G. N. & Lara, M. I. (2019). Antimicrobial compounds produced by Weissella confusa Cys2-2 strain inhibit Gram-negative bacteria growth, CyTA - Journal of Food, 17:1, 105-111.

Trapp, J., Almunia, C., Gaillard, J. C., Pible, O., Chaumot, A., Geffard, O., & Armengaud, J. (2016). Proteogenomic insights into the core-proteome of female reproductive tissues from crustacean amphipods. Journal of proteomics, 135, 51-61.

Castrejón‐Nájera, J., Ortega, C., Fajardo, R., Irgang, R., Tapia‐Cammas, D., Poblete‐Morales, M., & Avendaño‐Herrera, R. (2018). Isolation characterization, virulence potential of Weissella ceti responsible for weissellosis outbreak in rainbow trout (Oncorhynchus mykiss) cultured in Mexico. Transboundary and emerging diseases, 65(6), 1401-1407.

De Angelis, M., Mariotti, L., Rossi, J., Servili, M., Fox, P. F., Rollán, G., & Gobbetti, M. (2002). Arginine catabolism by sourdough lactic acid bacteria: purification and characterization of the arginine deiminase pathway enzymes from Lactobacillus sanfranciscensis CB1. Applied and Environmental Microbiology, 68(12), 6193-6201.

Srionnual, S., Yanagida, F., Lin, L.-H., Hsiao, K.-N. & Chen,Y.-S. (2007). Weissellicin 110, a newly discovered bacteriocin from Weissella cibaria 110, isolated from Plaa-som, a fermented fish product from Thailand. Applied and Environmental Microbiology, 73 (7), 2247–2250.

Masuda, Y., Zendo, T., Sawa, N., Perez, R. H., Nakayama, J. & Sonomoto, K. (2012). Characterization and identification of weissellicin Y and weissellicin M, novel bacteriocins produced by Weissella hellenica QU 13. Journal of Applied Microbiology, 112 (1), 99–108.

Leong, K. H., Chen, Y. S., Lin, Y. H., Pan, S. F., Yu, B., Wu, H. C., & Yanagida, F. (2013). Weissellicin L, a novel bacteriocin from sian‐sianzih‐isolated Weissella hellenica 4‐7. Journal of applied microbiology, 115(1), 70-76.

Chen, C., Chen, X., Jiang, M., Rui, X., Li, W. & Dong, M. (2014). A newly discovered bacteriocin from Weissella hellenica D1501 associated with Chinese Dong fermented meat (Nanx Wudl). Food Control, 42 (September 2013), 116–124.

Trias Mansilla, R., Bañeras Vives, L., Montesinos Seguí, E., & Badosa Romañó, E. (2008). Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. International Microbiology, 2008, núm. 11. p. 231-236.

Kariyawasam, K. M. G. M. M., Jeewanthi, R. K. C., Lee, N.-K. & Paik, H.-D. (2019). Characterization of cottage cheese using Weissella cibaria D30 : Physicochemical, antioxidant, and antilisterial properties. Journal of Dairy Science, 102, 1–7.

Nam, H., Ha, M., Bae, O. & Lee, Y. (2002). Effect of Weissella confusa Strain PL9001 on the Adherence and Growth of Helicobacter pylori. Applied and Environmental Microbiology, 68(9), 4642–4645.

Dey, D. K., Khan, I. & Kang, S. C. (2019). Anti-bacterial susceptibility profiling of Weissella confusa DD _ A7 against the multidrug-resistant ESBL-positive E. coli. Microbial Pthogenesis, 128 (November 2018), 119–130.

Chen, C., Rui, X., Lu, Z., Li, W., & Dong, M. (2014). Enhanced shelf-life of tofu by using bacteriocinogenic Weissella hellenica D1501 as bioprotective cultures. Food Control, 46, 203-209.

O’Connor, P. M., Kuniyoshi, T. M., Oliveira, R. P., Hill, C., Ross, R. P. & Cotter, P. D. (2020). Antimicrobials for food and feed , a bacteriocin perspective. Curr. Opin. Biotechnol. 61, 160–167.

Cotter, P. D., Ross, R. P. & Hill, C. (2013). Bacteriocins-a viable alternative to antibiotics. Nature Reviews Microbiology, 11 (2), 95–105.

Woraprayote, W., Pumpuang, L., Tosukhowong, A., Zendo, T., Sonomoto, K., Benjakul, S., & Visessanguan, W. (2018). Antimicrobial biodegradable food packaging impregnated with Bacteriocin 7293 for control of pathogenic bacteria in pangasius fish fillets. LWT - Food Science and Technology, 89 (April 2017), 427–433.

Lakra, A. K., Domdi, L., Tilwani Y. M. & Arul, V. (2020). Physicochemical and functional characterization of mannan exopolysaccharide from Weissella confusa MD1 with bioactivities. International Journal of Biological Macromolecules, 143, 797–805.

Kavitake, D., Techi, M., Abid, U. K., Kandasamy, S., Devi, P. B. & Shetty, P. H. (2019). Effect of c -irradiation on physico-chemical and antioxidant properties of galactan exopolysaccharide from Weissella confusa KR780676. Journal of Food Science and Technology, 10 (88), 1–9.

Baruah, R., Maina, N. H., Katina, K., Juvonen, R., & Goyal, A. (2017). Functional food applications of dextran from Weissella cibaria RBA12 from pummelo (Citrus maxima). International journal of food microbiology, 242, 124-131.

Kajala, I., Mäkelä, J., Coda, R., Shukla, S., Shi, Q., Maina, N. H., Juvonen, R., Ekholm, P., Goyal, A., Tenkanen, M. & Katina, K. (2016). Rye bran as fermentation matrix boosts in situ dextran production by Weissella confusa compared to wheat bran. Applied Microbiology and Biotechnology, 100 (8), 3499–3510.

Malang, S. K., Maina, N. H., Schwab, C., Tenkanen, M. & Lacroix, C. (2015). Characterization of exopolysaccharide and ropy capsular polysaccharide formation by Weissella. Food Microbiology, 46, 418–427.

Devi, P. B., Kavitake, D. & Shetty, P. H. (2016). Physico-chemical characterization of galactan exopolysaccharide produced by Weissella confusa KR780676. International Journal of Biological Macromolecules, 93 (Part A), 822–828.

Kavitake, D., Devi, P. B. & Shetty, P. H. (2016). Characterization of a novel galactan produced by Weissella confusa KR780676 from an acidic fermented food. International Journal of Biological Macromolecules, 86 (May 2016), 681–689.

Tang, X., Zhang, B., Huang, W., Ma, Z., Zhang, F., Wang, F., Zou, Q. & Zheng, J. (2019). Food Hydrocolloids Hydration, water distribution and microstructure of gluten during freeze thaw process: Role of a high molecular weight dextran produced by Weissella confusa QS813. Food Hydrocolloids, 90(October 2018), 377–384.

Lynch, K. M., McSweeney, P. L. H., Arendt, E. K., Uniacke-Lowe, T., Galle, S. & Coffey, A. (2014). Isolation and characterisation of exopolysaccharide-producing Weissella and Lactobacillus and their application as adjunct cultures in Cheddar cheese. International Dairy Journal, 34 (1), 125–134.

Zannini, E., Mauch, A., Galle, S., Gänzle, M., Coffey, A., Arendt, E. K., Taylor, J. P. & Waters, D. M. (2013). Barley malt wort fermentation by exopolysaccharide-forming Weissella cibaria MG1 for the production of a novel beverage. Journal of Applied Microbiology, 115 (6), 1379–1387.

Rosca, I., Petrovici, A. R., Peptanariu, D., Nicolescu, A., Dodi, G., Avadanei, M., Inavoc, I. C., Bostanaru, A. C., Mares, M. & Ciolacu, D. (2018). Biosynthesis of dextran by Weissella confusa and its In vitro functional characteristics. International Journal of Biological Macromolecules, 107 (July 2017), 1765–1772.

Elavarasi, V., Pugazhendhi, A., Poornima Priyadharsani, T. K., Valsala, H. & Thamaraiselvi, K. (2014). Screening and Characterization of Weissella cibaria Isolated from Food Source for Probiotic Properties. International Journal of Computer Applications, 1 (May 2014), 29–32.

Ojekunle, O., Banwo, K., & Sanni, A. I. (2017). In vitro and In vivo evaluation of Weissella cibaria and Lactobacillus plantarum for their protective effect against cadmium and lead toxicities. Letters in Applied Microbiology, 64 (5), 379–385.

Immerzeel, P., Falck, P., Galbe, M., Adlercreutz, P., Nordberg Karlsson, E. & Stålbrand, H. (2014). Extraction of water-soluble xylan from wheat bran and utilization of enzymatically produced xylooligosaccharides by Lactobacillus, Bifidobacterium and Weissella spp. LWT - Food Science and Technology, 56 (2), 321–327.

Adesulu-dahunsi, A. T., Sanni, A. I. & Jeyaram, K. (2018). Production, characterization and In vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. LWT - Food Science and Technology, 87 (2018), 432–442.

Bejar, W., Gabriel, V., Amari, M., Morel, S., Mezghani, M., Maguin, E., Fontagné-Faucher, C., Bejar, S., & Chouayekh, H. (2013). Characterization of glucansucrase and dextran from Weissella sp . TN610 with potential as safe food additives. International Journal of Biological Macromolecules, 52 (2013), 125–132.

Zannini, E., Jeske, S., Lynch, K. & Arendt, E. K. (2018). Development of novel quinoa-based yoghurt fermented with dextran producer Weissella cibaria MG1. International Journal of Food Microbiology, 268 ( December 2017), 19–26.

Tinzl-Malang, S. K., Rast, P., Grattepanche, F., Sych, J. & Lacroix, C. (2015). Exopolysaccharides from co-cultures of Weissella confusa 11GU-1 and Propionibacterium freudenreichii JS15 act synergistically on wheat dough and bread texture. International Journal of Food Microbiology, 214 (April 2015), 91–101.

Deatraksa, J., Sunthornthummas, S., Rangsiruji, A., Sarawaneeyaruk, S., Suwannasai, N. & Pringsulaka, O. (2018). Isolation of folate-producing Weissella spp. from Thai fermented fish (Plaa Som Fug). LWT - Food Science and Technology, 89 (October 2017), 388–391.

Endo, A., Futagawa-Endo, Y., Kawasaki, S., Dicks, L. M. T., Niimura, Y. & Okada, S. (2009). Sodium acetate enhances hydrogen peroxide production in Weissella cibaria. Letters in Applied Microbiology, 49 (1), 136–141.

Di Cagno, R., Surico, R. F., Minervini, G., De Angelis, M., Rizzello, C. G. & Gobbetti, M. (2009). Use of autochthonous starters to ferment red and yellow peppers ( Capsicum annum L .) to be stored at room temperature,” International Journal of Food Microbiology, 130 (2), 108–116.

Alfonzo, A., Ventimiglia, G., Corona, O., Di Gerlando, R., Gaglio, R., Francesca, N., Moschetti, G. & Settanni, L. (2013). Diversity and technological potential of lactic acid bacteria of wheat flours. Food Microbiology, 36 (2), 343–354.

Di Cagno, R., Minervini, G., Rizzello, C. G., De Angelis, M. & Gobbetti, M. (2011). Effect of lactic acid fermentation on antioxidant, texture, color and sensory properties of red and green smoothies. Food Microbiology, 28 (5), 1062–1071.

Fhoula, I., Najjari, A., Turki, Y., Jaballah, S., Boudabous, A. & Ouzari, H. (2013). Diversity and Antimicrobial Properties of Lactic Acid Bacteria Isolated from Rhizosphere of Olive Trees and Desert Truffles of Tunisia. BioMed Research International, 2013, 14.

Tohno, M., Kobayashi, H., Nomura, M., Uegaki, R. & Cai,Y. (2012). Identification and characterization of lactic acid bacteria isolated from mixed pasture of timothy and orchardgrass, and its badly preserved silage. Animal Science Journal, 83 (4), 318–330.

Fuka, M. M., Wallisch, S., Engel, M., Welzl, G., Havranek, J. & Schloter, M. (2013). Dynamics of bacterial communities during the ripening process of different Croatian cheese types derived from raw ewe’s milk cheeses. PLoS ONES ONE, 8 (11), 1–10.

Lin S.T., Wang L.T., Wu Y.C., Guu J.J., Tamura T., Mori K., Huang L., Watanabe K. (2020). Weissella muntiaci sp. nov., isolated from faeces of Formosan barking deer (Muntiacus reevesi). International Journal of Systematic and Evolutionary Microbiology, 70(3), 1578-1584.

Li Y. Q., Tian W. L., & Gu C. T. (2020). Weissella sagaensis sp. nov., isolated from traditional Chinese yogurt. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2485-2492.

Månberger, A., Verbrugghe, P., Guðmundsdóttir, E. E. et al. (2020). Taxogenomic assessment and genomic characterisation of Weissella cibaria strain 92 able to metabolise oligosaccharides derived from dietary fibres. Sci Rep 10, 5853.

Teixeira, C. G., Fusieger, A., Milião, G. L., Martins, E., Drider, D., Nero, L. A., & de Carvalho, A. F. (2021). Weissella: An Emerging Bacterium with Promising Health Benefits. Probiotics and Antimicrobial Proteins, 1-11.

Kavitake, D., Balyan, S., Devi, P. B., & Shetty, P. H. (2020). Evaluation of oil-in-water (O/W) emulsifying properties of galactan exopolysaccharide from Weissella confusa KR780676. Journal of food science and technology, 57(4), 1579-1585.

Zhao, D., Jiang, J., Liu, L., Wang, S., Ping, W., & Ge, J. (2021). Characterization of exopolysaccharides produced by Weissella confusa XG-3 and their potential biotechnological applications. International Journal of Biological Macromolecules.

Lakra, A. K., Ramatchandirane, M., Kumar, S., Suchiang, K., & Arul, V. (2021). Physico-chemical characterization and aging effects of fructan exopolysaccharide produced by Weissella cibaria MD2 on Caenorhabditis elegans. LWT, 143, 111100.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.

Downloads

Published

28/04/2021

How to Cite

TEIXEIRA, C. G. .; SILVA, R. R. da .; FUSIEGER, A.; MARTINS, E.; FREITAS, R. de; CARVALHO, A. F. de . The Weissella genus in the food industry: A review . Research, Society and Development, [S. l.], v. 10, n. 5, p. e8310514557, 2021. DOI: 10.33448/rsd-v10i5.14557. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/14557. Acesso em: 18 apr. 2024.

Issue

Section

Review Article