Chitosan and hydroxyapatite scaffolds with amoxicillin for bone repair

Authors

DOI:

https://doi.org/10.33448/rsd-v10i5.14790

Keywords:

Chitosan; Hydroxyapatite; Scaffolds; Amoxicillin; Drug delivery systems.

Abstract

The bone repair process, among other physiological mechanisms, occurs in a harmonious manner throughout the body. However, the presence of some deleterious factors such as surgery, trauma or pathology, can interfere with the physiology of bone remodeling. It´s Known that the synergistic antimicrobial action between drugs and biomaterials can help and favor osteogenesis after grafting surgery. Therefore, this study aims to develop chitosan / hydroxyapatite scaffolds with amoxicillin for bone repair in the oral cavity. For this, raw materials were selected and characterized and scaffolds were made by the processes of solubilization, dispersion and lyophilization. The characterizations were made by optical microscopy, scanning electron microscopy, eenergy dispersive spectrometer, swelling potential, degradation analysis, apparent porosity test and in vitro cell cytotoxicity. The scaffolds produced in this research showed to have not only adequate physical characteristics but also chemical and biological ones. It was as well as detected a reproducible methodology that resulted in a biomaterial with morphology that provided a high degree of swelling, porosity, satisfactory degradation and the presence of amoxicillin which was confirmed by the eenergy dispersive spectrometer. Nevertheless, the scaffolds with 30% hydroxyapatite showed the best results for in vitro cell viability. So, it is possible to conclude that the scaffolds produced show successful characteristics for bone repair in the oral cavity.

References

Al-Namnam, N. M., Kutty, M. G., Chai, W. L., Ha, K. O., Kim, K. H., Siar, C. H., & Ngeow, W. C. (2017). An injectable poly (caprolactone trifumarate-gelatin microparticles)(PCLTF-GMPs) scaffold for irregular bone defects: Physical and mechanical characteristics. Materials Science and Engineering, 72, 332-340.

Almeida, K. V. d. (2013). Arcabouços de quitosana: avaliação da influência da massa molar e do processo de congelamento na biodegradação. (Dissertação Ciencia e Engenharia de Materials), UFCG, Campina Grande.

Almeida, R. S., Peniche, C., Solís, Y., Peniche, H., Rigo, E., & Rosa, F. (2019). Produção, caracterização e avaliação in vitro de partículas de quitosana e hidroxiapatita para substituição óssea. Cerâmica, 65(376), 569-577.

Anamarua, R., Rico, P., Ferrer, G. G., Ivanković, M., & Ivanković, H. (2016). In situ hydroxyapatite content affects the cell differentiation on porous chitosan/hydroxyapatite scaffolds. Annals of biomedical engineering, 44(4), 1107-1119. doi:10.1007/s10439-015-1418-0

Aranaz, I., Gutiérrez, M. C., Ferrer, M. L., & Del Monte, F. (2014). Preparation of chitosan nanocompositeswith a macroporous structure by unidirectional freezing and subsequent freeze-drying. Marine drugs, 12(11), 5619-5642.

Atak, B. H., Buyuk, B., Huysal, M., Isik, S., Senel, M., Metzger, W., & Cetin, G. (2017). Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications. Carbohydrate polymers, 164, 200-213.

Ávila Souza, F., Borrasca, A., Aranega, A. M., & Ponzoni, D. (2014). Reconstruction of maxillary ridge atrophy caused by sequela of dentoalveolar trauma with autogenous bone graft harvested from mentum. Clinical Oral Implants Research, 517.

Batista, H. d. A. (2016). Produção de scaffolds de fosfatos de cálcio por transformação pseudomórfica do gesso.

Birt, M. C., Anderson, D. W., Toby, E. B., & Wang, J. (2017). Osteomyelitis: recent advances in pathophysiology and therapeutic strategies. Journal of orthopaedics, 14(1), 45-52.

Cai, Y., Venkatachalam, I., Tee, N. W., Tan, T. Y., Kurup, A., Wong, S. Y., Liew, Y. X. (2017). Prevalence of healthcare-associated infections and antimicrobial use among adult inpatients in Singapore acute-care hospitals: results from the first national point prevalence survey. Clinical Infectious Diseases, 64(suppl_2), S61-S67.

Callister, W. J., & Rethwisch, D. G. (2012). Fundamentals of materials science and engineering: an integrated approach: John Wiley & Sons.

Çanakçı, D. (2021). Synthesis and Characterization of Boron, Copper, and Zinc-Doped Hydroxyapatite by Sol-Gel Method: Research of Absorption and Thermal Behavior.

Caneva, M., Botticelli, D., Carneiro Martins, E. N., Caneva, M., Lang, N. P., & Xavier, S. P. (2017). Healing at the interface between recipient sites and autologous block bone grafts affixed by either position or lag screw methods: a histomorphometric study in rabbits. Clinical oral implants research, 28(12), 1484-1491.

Carvalho, É. B., Veronesi, G. F., Manfredi, G. G., Damante, C. A., Sant'Ana, A. C., Greghi, S. L., Rezende, M. L. (2020). Bone demineralization improves onlay graft consolidation: A histological study in rat calvaria. Journal of periodontology.

Chaves, A. V. (2015). Hidroxiapatita e magnetita associadas à scaffolds de quitosana para aplicação em regeneração óssea. (Dissertação de Mestrado em Química ), UFCE, Fortaleza (CE).

Cruz, J. B. d., Catão, C. D. d. S., Barbosa, R. C., & Fook, M. V. L. (2016). Synthesis and characterization of chitosan scaffolds with antineoplastic agent. Matéria (Rio de Janeiro), 21(1), 129-140 1517-7076.

Dai, C., Li, Y., Pan, W., Wang, G., Huang, R., Bu, Y., Gao, F. (2019). Three-dimensional high-porosity chitosan/honeycomb porous carbon/hydroxyapatite scaffold with enhanced osteoinductivity for bone regeneration. ACS Biomaterials Science & Engineering, 6(1), 575-586.

Dantas, M. J. L. (2016). Estruturas tridimensionais fabricadas a partir de esferas quitosana/hidroxiapatita para regeneração óssea. (Tese de Doutorado), Universidade Federal de Campina Grande (PB).

Dorozhkin, S. V. (2010). Bioceramics of calcium orthophosphates. Biomaterials, 31(7), 1465-1485.

Dowd, F. J., Yagiela, J. A., Johnson, B., Mariotti, A., & Neidle, E. A. (2010). Pharmacology and Therapeutics for Dentistry-E-Book: Elsevier Health Sciences.

Duman, Ş., & Bulut, B. (2021). Effect of akermanite powders on mechanical properties and bioactivity of chitosan-based scaffolds produced by 3D-bioprinting. Ceramics International.

Dumont, V. C. (2017). Biocompósitos de quitosana e derivados/nanohidroxiapatita reticulados com epicloridrina e dopados com zinco para potencial aplicação em engenharia tecidual. (Tese de Doutorado), Universidade Federal de Minas Gerais, Belo Horizonte.

Freitas, L. F. A. (2015). Scaffolds porosos à base de fosfatos de cálcio para regeneração óssea. (Dissertação em Engenharia de Materiais e Cerâmica), Universidade de Aveiro, Aveiro.

Gecim, G., Dönmez, S., & Erkoc, E. (2021). Calcium deficient hydroxyapatite by precipitation: Continuous process by vortex reactor and semi-batch synthesis. Ceramics International, 47(2), 1917-1928.

Heidari, F., Razavi, M., Bahrololoom, M. E., Tahriri, M., Rasoulianboroujeni, M., Koturi, H., & Tayebi, L. (2018). Preparation of natural chitosan from shrimp shell with different deacetylation degree. Materials Research Innovations, 22(3), 177-181.

Heras, C., Sanchez-Salcedo, S., Lozano, D., Peña, J., Esbrit, P., Vallet-Regi, M., & Salinas, A. (2019). Osteostatin potentiates the bioactivity of mesoporous glass scaffolds containing Zn2+ ions in human mesenchymal stem cells. Acta biomaterialia, 89, 359-371.

Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced drug delivery reviews, 64, 18-23.

John, Ł., Janeta, M., & Szafert, S. (2017). Designing of macroporous magnetic bioscaffold based on functionalized methacrylate network covered by hydroxyapatites and doped with nano-MgFe2O4 for potential cancer hyperthermia therapy. Materials Science and Engineering: C, 78, 901-911.

Khanna, K., Jaiswal, A., Dhumal, R. V., Selkar, N., Chaudhari, P., Soni, V. P., Bellare, J. (2017). Comparative bone regeneration study of hardystonite and hydroxyapatite as filler in critical-sized defect of rat calvaria. RoYal Society of Chemistry, 7(60), 12.

Lei, Y., Xu, Z., Ke, Q., Yin, W., Chen, Y., Zhang, C., & Guo, Y. (2017). Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering. Materials Science and Engineering, 72, 134-142.

Lei;, Xu, Z., Ke, Q., Yin, W., Chen, Y., Zhang, C., & Guo, Y. (2017). Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering. Materials Science and Engineering: C, 72, 134-142.

Lett, J. A., Sagadevan, S., Prabhakar, J. J., & Latha, M. B. (2019). Exploring the binding effect of a seaweed-based gum in the fabrication of hydroxyapatite scaffolds for biomedical applications. Materials Research Innovations.

Liu, D., Nie, W., Li, D., Wang, W., Zheng, L., Zhang, J., He, C. (2019). 3D printed PCL/SrHA scaffold for enhanced bone regeneration. Chemical Engineering Journal, 362, 269-279.

LogithKumar, R., KeshavNarayan, A., Dhivya, S., Chawla, A., Saravanan, S., & Selvamurugan, N. (2016). A review of chitosan and its derivatives in bone tissue engineering. Carbohydrate polymers, 151, 172-188.

Luna-Domínguez, J. H., Téllez-Jiménez, H., Hernández-Cocoletzi, H., García-Hernández, M., Melo-Banda, J. A., & Nygren, H. (2018). Development and in vivo response of hydroxyapatite/whitlockite from chicken bones as bone substitute using a chitosan membrane for guided bone regeneration. Ceramics International, 44(18), 22583-22591.

Materials, A. S. f. T. (2010). ASTM F1635-11 Standard Test Method for in Vitro Degradation Testing of Hydrolytically Degradable Polymer Resins and Fabricated Forms for Surgical Implants. West Conshohocken: ASTM.

Nazeer, M. A., Onder, O. C., Sevgili, I., Yilgor, E., Kavakli, I. H., & Yilgor, I. (2020). 3D printed poly (lactic acid) scaffolds modified with chitosan and hydroxyapatite for bone repair applications. Materials Today Communications, 101515.

Nicolas, G. G., & Lavoie, M. C. (2011). Streptococcus mutans et les streptocoques buccaux dans la plaque dentaire. Canadian journal of microbiology, 57(1), 1-20.

Nurfuadi, A. R. (2019). Sintesis Dan Karakterisasi Komposit Hidroksiapatit/Kolagen/Kitosan Sebagai Kandidat Bone Scaffold. Universitas Airlangga.

Öfkeli, F., Demir, D., & Bölgen, N. (2021). Biomimetic mineralization of chitosan/gelatin cryogels and in vivo biocompatibility assessments for bone tissue engineering. Journal of Applied Polymer Science, 138(14), 50337.

Oliveira, N. K., Miguita, L., Salles, T. H. C., d’Ávila, M. A., Marques, M. M., & Deboni, M. C. Z. (2018). Can porous polymeric scaffolds be functionalized by stem cells leading to osteogenic differentiation? A systematic review of in vitro studies. Journal of Materials Science, 53(23), 15757-15768.

Rebelo, M. d. A., Alves, T. F. R., Lopes, F. C., Oliveira, J., Jose, M. d., Pontes, K. S.,. Chaud, M. V. (2015). Scaffold of chitosan-sodium alginate and hydroxyapatite with application potential for bone regeneration. Paper presented at the 13° congresso Brasileiro de Polímeros, Natal-RN.

Rosendo, R. A. (2016). Desenvolvimento e caracterização de scaffolds de quitosana/Cissus verticillata (L.) Nicolson & CE Jarvis.

Shahbazarab, Z., Teimouri, A., Chermahini, A. N., & Azadi, M. (2018). Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapatite prepared by freeze-drying method for bone tissue engineering. International journal of biological macromolecules, 108, 1017-1027.

Shamloo, A., Kamali, A., & Fard, M. R. B. (2019). Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by the freeze-gelation method. Materials Research Express, 6(11), 115404.

Shao, Z., Zhao, Y., & Yang, M. (2014). Preparing nano-HA powder by liquid precipitation. Materials Research Innovations, 18(sup2), S2-703-S702-706.

Sharipova, A., Gotman, I., Psakhie, S., & Gutmanas, E. (2019). Biodegradable nanocomposite Fe–Ag load-bearing scaffolds for bone healing. Journal of the mechanical behavior of biomedical materials, 98, 246-254.

Shu, Y., Yu, Y., Zhang, S., Wang, J., Xiao, Y., & Liu, C. (2018). The immunomodulatory role of sulfated chitosan in BMP-2-mediated bone regeneration. Biomaterials science, 6(9), 2496-2507.

Silva, M. C., Nascimento, I., Ribeiro, V. d. S., & Fook, M. V. L. (2016). Avaliação do método de obtenção de scaffolds quitosana/curcumina sobre a estrutura, morfologia e propriedades térmicas. Matéria (Rio de Janeiro), 21(3), 560-568.

Sixou, M., Diouf, A., & Alvares, D. (2007). Biofilm buccal et pathologies buccodentaires. Antibiotiques, 9(3), 181-188.

Whang, K., Thomas, C., Healy, K., & Nuber, G. (1995). A novel method to fabricate bioabsorbable scaffolds. Polymer, 36(4), 837-842.

Xu, J., Strandman, S., Zhu, J. X., Barralet, J., & Cerruti, M. (2015). Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterials, 37, 395-404.

Yagiela, J. A., Dowd, F. J., Johnson, B., Mariotti, A., & Neidle, E. A. (2010). Pharmacology and Therapeutics for Dentistry-E-Book: Elsevier Health Sciences.

Zainol, I., Ghani, S., Mastor, A., Derman, M., & Yahya, M. (2009). Enzymatic degradation study of porous chitosan membrane. Materials Research Innovations, 13(3), 316-319.

Zhang, D., George, O. J., Petersen, K. M., Jimenez-Vergara, A. C., Hahn, M. S., & Grunlan, M. A. (2014). A bioactive “self-fitting” shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects. Acta Biomaterialia, 10(11), 4597-4605.

Zhang, J., Wu, L., Jing, D., & Ding, J. (2005). A comparative study of porous scaffolds with cubic and spherical macropores. Polymer, 46(13), 4979-4985.

Zhang, Q., Zhao, Y., Yan, S., Yang, Y., Zhao, H., Li, M., Kaplan, D. L. (2012). Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons. Acta Biomaterialia, 8(7), 2628-2638.

Zhang, X., Zhang, Y., Ma, G., Yang, D., & Nie, J. (2015). The effect of the prefrozen process on properties of a chitosan/hydroxyapatite/poly (methyl methacrylate) composite prepared by freeze drying method used for bone tissue engineering. RSC advances, 5(97), 79679-79686.

Downloads

Published

01/05/2021

How to Cite

PONCIANO, R. C. de O. .; COSTA, A. C. F. de M.; BARBOSA , R. C.; FOOK , M. V. L.; PONCIANO, J. J. Chitosan and hydroxyapatite scaffolds with amoxicillin for bone repair . Research, Society and Development, [S. l.], v. 10, n. 5, p. e13410514790, 2021. DOI: 10.33448/rsd-v10i5.14790. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/14790. Acesso em: 24 apr. 2024.

Issue

Section

Engineerings