Biocompatibility and biomineralization of the experimental nanoparticulate mineral trioxide aggregate (MTA)




Materials Testing; Nanoparticles; Endodontics; Root canal therapy.


To investigate the tissue response and the biomineralization ability of the experimental nanoparticulate mineral trioxide aggregate compared to grey MTA and Fillapex MTA. Polyethylene tubes containing materials or empty tubes for control were inserted into the subcutaneous tissues of 30 rats. After 7, 15, 30, 60, and 90 days, the rats were killed and the tubes were removed for analysis using hematoxylin-eosin staining, von Kossa staining, and under polarized light. Inflammation was graded through a score system; the biomineralization ability was recorded as present or absent. The results were statistically analyzed using the Kruskal-Wallis test (p<0.05). On days 7 and 15 there was a significant difference between the Nano MTA (median score of 3) and MTA Fillapex groups (median score of 4), being MTA Fillapex the material with the highest number of inflammatory cells. At 30, 60, and 90 days there was no difference between the Nano MTA, Grey MTA, and MTA Fillapex groups. All materials induced the formation of mineralized tissue in all experimental periods. Nano MTA showed biocompatibility and biomineralization similar to grey MTA Angelus.


Baek, S. H., Plenk, H., Jr., & Kim, S. (2005). Periapical tissue responses and cementum regeneration with amalgam, SuperEBA, and MTA as root-end filling materials. Journal of Endodontics, 31(6), 444-449. Retrieved from

Browne, R. M. (1994). Animal tests for biocompatibility of dental materials--relevance, advantages and limitations. Journal of Dentistry, 22 Suppl 2, S21-24. doi:10.1016/0300-5712(94)90035-3

Bueno, C. R. E., Vasques, A. M. V., Cury, M. T. S., Sivieri-Araujo, G., Jacinto, R. C., Gomes-Filho, J. E., . . . Dezan-Junior, E. (2018). Biocompatibility and biomineralization assessment of mineral trioxide aggregate flow. Clinical Oral Investigations. doi:10.1007/s00784-018-2423-0

Camilleri, J. (2008). The chemical composition of mineral trioxide aggregate. J Conserv Dent, 11(4), 141-143. doi:10.4103/0972-0707.48834

Camilleri, J. (2014). Mineral trioxide aggregate in dentistry: from preparation to application (1st Ed.). New York: Springer-Verlag Berlin Heidelberg.

Cintra, L. T. A., Benetti, F., de Azevedo Queiroz, I. O., de Araujo Lopes, J. M., Penha de Oliveira, S. H., Sivieri Araujo, G., & Gomes-Filho, J. E. (2017). Cytotoxicity, Biocompatibility, and Biomineralization of the New High-plasticity MTA Material. Journal of Endodontics, 43(5), 774-778. doi:10.1016/j.joen.2016.12.018

Cosme-Silva, L., Benetti, F., Dal-Fabbro, R., Gomes Filho, J. E., Sakai, V. T., Cintra, L. T. A., . . . Viola, N. V. (2019). Biocompatibility and biomineralization ability of Bio-C Pulpecto. A histological and immunohistochemical study. International Journal of Paediatric Dentistry. doi:10.1111/ipd.12464

Cosme-Silva, L., Dal-Fabbro, R., GonÇAlves, L. d. O., Prado, A. S. A. d., Plazza, F. A., Viola, N. V., . . . Gomes Filho, J. E. (2019). Hypertension affects the biocompatibility and biomineralization of MTA, High-plasticity MTA, and Biodentine®. Brazilian Oral Research, 33. doi:10.1590/1807-3107bor-2019.vol33.0060

Cosme-Silva, L., Gomes-Filho, J. E., Benetti, F., Dal-Fabbro, R., Sakai, V. T., Cintra, L. T. A., . . . Viola, N. V. (2019). Biocompatibility and immunohistochemical evaluation of a new calcium silicate-based cement, Bio-C Pulpo. International Endodontic Journal, 52(5), 689-700. doi:10.1111/iej.13052

Cosme-Silva, L., Santos, A. F. D., Lopes, C. S., Dal-Fabbro, R., Benetti, F., Gomes-Filho, J. E., . . . Viola, N. V. (2020). Cytotoxicity, inflammation, biomineralization, and immunoexpression of IL-1beta and TNF-alpha promoted by a new bioceramic cement. J Appl Oral Sci, 28, e20200033. doi:10.1590/1678-7757-2020-0033

Dal-Fabbro, R., Marques de Almeida, M., Cosme-Silva, L., Neto, A. H. C., Salzedas, L. M. P., Cintra, L. T. A., & Filho, J. E. G. (2019). Chronic alcohol consumption changes blood marker profile and bone density in rats with apical periodontitis. Journal of Investigative and Clinical Dentistry, e12418. doi:10.1111/jicd.12418

de Azevedo Queiroz, I. O., Mello, W. G., Martins, C. M., Dal Fabbro, R., Narciso, L. G., Massunari, L., . . . Gomes-Filho, J. E. (2018). Systemic bone marker expression induced by grey and white mineral trioxide aggregate in normal and diabetic conditions. International Endodontic Journal. doi:10.1111/iej.12900

Farsi, N., Alamoudi, N., Balto, K., & Al Mushayt, A. (2006). Clinical assessment of mineral trioxide aggregate (MTA) as direct pulp capping in young permanent teeth. Journal of Clinical Pediatric Dentistry, 31(2), 72-76. Retrieved from

Gomes-Filho, J. E., Rodrigues, G., Watanabe, S., Estrada Bernabe, P. F., Lodi, C. S., Gomes, A. C., . . . Silos Moraes, J. C. (2009). Evaluation of the tissue reaction to fast endodontic cement (CER) and Angelus MTA. Journal of Endodontics, 35(10), 1377-1380. doi:10.1016/j.joen.2009.06.010

Hashem, A. A., & Hassanien, E. E. (2008). ProRoot MTA, MTA-Angelus and IRM used to repair large furcation perforations: sealability study. Journal of Endodontics, 34(1), 59-61. doi:10.1016/j.joen.2007.09.007

Holland, R., de Souza, V., Nery, M. J., Otoboni Filho, J. A., Bernabe, P. F., & Dezan Junior, E. (1999). Reaction of rat connective tissue to implanted dentin tubes filled with mineral trioxide aggregate or calcium hydroxide. Journal of Endodontics, 25(3), 161-166. doi:10.1016/s0099-2399(99)80134-4

Moreno-Hidalgo, M. C., Caleza-Jimenez, C., Mendoza-Mendoza, A., & Iglesias-Linares, A. (2014). Revascularization of immature permanent teeth with apical periodontitis. International Endodontic Journal, 47(4), 321-331. doi:10.1111/iej.12154

Nekoofar, M. H., Stone, D. F., & Dummer, P. M. (2010). The effect of blood contamination on the compressive strength and surface microstructure of mineral trioxide aggregate. International Endodontic Journal, 43(9), 782-791. doi:10.1111/j.1365-2591.2010.01745.x

Olsson, B., Sliwkowski, A., & Langeland, K. (1981). Subcutaneous implantation for the biological evaluation of endodontic materials. Journal of Endodontics, 7(8), 355-367. doi:10.1016/S0099-2399(81)80057-X

Parirokh, M., Torabinejad, M., & Dummer, P. M. H. (2018). Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part I: vital pulp therapy. International Endodontic Journal, 51(2), 177-205. doi:10.1111/iej.12841

Recommended standard practices for biological evaluation of dental materials. Federation Dentaire International, Commission of Dental Materials, Instruments, Equipment and Therapeutics. (1980). International Dental Journal, 30(2), 140-188. Retrieved from

Sales, L. S., Santos, A. D. d., Cosme-Silva, L., Queiroz, I. O. d. A., Martins, C. M., Dal-Fabbro, R., . . . Gomes Filho, J. E. (2021). Influence of the Vehicle on the Tissue Reaction and Biomineralization of Fast Endodontic Cement. Pesquisa Brasileira em Odontopediatria e Clinica Integrada, 21. doi:10.1590/pboci.2021.053

Simon, S., Rilliard, F., Berdal, A., & Machtou, P. (2007). The use of mineral trioxide aggregate in one-visit apexification treatment: a prospective study. International Endodontic Journal, 40(3), 186-197. doi:10.1111/j.1365-2591.2007.01214.x

Torabinejad, M., Parirokh, M., & Dummer, P. M. H. (2018). Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part II: other clinical applications and complications. International Endodontic Journal, 51(3), 284-317. doi:10.1111/iej.12843

Viola, N. V., Guerreiro-Tanomaru, J. M., da Silva, G. F., Sasso-Cerri, E., Tanomaru-Filho, M., & Cerri, P. S. (2012). Biocompatibility of an experimental MTA sealer implanted in the rat subcutaneous: quantitative and immunohistochemical evaluation. J Biomed Mater Res B Appl Biomater, 100(7), 1773-1781. doi:10.1002/jbm.b.32744Put space between one reference and another.




How to Cite

DAL-FABBRO, R.; COSME-SILVA, L.; QUEIROZ, I. O. de A.; DUARTE, P. C. T.; CAPALBO, L. C.; SANTOS, A. D.; MORAES, J. C. S.; GOMES-FILHO, J. E. Biocompatibility and biomineralization of the experimental nanoparticulate mineral trioxide aggregate (MTA). Research, Society and Development, [S. l.], v. 10, n. 5, p. e27710514866, 2021. DOI: 10.33448/rsd-v10i5.14866. Disponível em: Acesso em: 26 mar. 2023.



Health Sciences