Analysis of the Energy Efficiency of a Wood-Powered Industrial Boiler

Authors

DOI:

https://doi.org/10.33448/rsd-v9i1.1606

Keywords:

pirotubular; energy losses; indirect method.

Abstract

The objective of this work was to characterize the thermal performance of a steam generator with the intention of reducing the waste of fuel and the costs involved. The economic and social potential of a country is closely related to its energy reserve and the way it is exploited. Development causes significant environmental impacts, the majority being due to the generation and use of energy, of which the demand has become increasingly large. The methodology used was the analysis of an industrial boiler of the ATA 14 H 3N pyrotubular type, of the ATA brand, with a capacity of 33.3 kg / s of steam and a pressure of up to 1034 kPa, fueled by solid fuel (eucalyptus firewood trunks). Data needed for the analysis were obtained through field measurements and chemical analysis reports prepared by specialized companies. The result of the thermal efficiency of the boiler was obtained, by the indirect method, around 74%. It has been concluded that in order to improve the efficiency of the boiler it will be necessary to optimize the excess air, as well as the isolation of more stretches of the steam line and the installation of condensate traps in distant points from the steam generation center.

References

Alves, J. E. D. (2012). O crescimento da demanda de energia no mundo. EcoDebate. Recuperado de https://www.ecodebate.com.br/2012/03/12/o-crescimento-da-demanda-de-energia-no-mundo-artigo-de-jose-eustaquio-diniz-alves/. Acesso em: 27 out. 2017.

ASME. (2008). Fired steam generators: Performance test codes. ASME PTC 4-2008. Nova Iorque. Recuperado de https://www.worldcat.org/title/fired-steam-generators-performance-test-codes-asme-ptc-4-2008-revision-of-asme-ptc-4-1998/oclc/808490437. Acesso em: 12 nov. 2017.

Bahmanyar, M.E., & Talebi, S. (2019). A performance analysis of vertical steam generator using an entropy generation method. Annals of Nuclear Energy v. 125, pp. 212-221. doi: 10.1016/j.anucene.2018.10.055. Acesso em: 12 ago. 2019.

Bazzo, E. (1995). Geração de Vapor. 2a Ed. Florianópolis, Santa catarina: Editora da Universidade Federal de Santa Catarina, pp. 01-216.

Bizzo, W. A. (2003). Geração, distribuição e utilização de vapor. [s.l.] Universidade Estadual de Campinas, Campinas, SP, Brasil, pp.01-128.

British Petroleum. (2017). BP statistical review of world energy. 66a Ed. Londres. Recuperado de http://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf. Acesso em: 12 nov. 2017.

Çengel, Y. A., & Boles, M. A. (2006). Termodinâmica. 5a Ed. São Paulo: McGraw-Hill, pp. 01-800.

Centrais Elétricas Brasileiras. (2005). Eficiência energética no uso de vapor. Rio de Janeiro: Eletrobrás, pp. 01-196. Recuperado de https://bucket-gw-cni-static-cms-si.s3.amazonaws.com/media/uploads/arquivos/LivroVapor.pdf. Acesso em: 12 nov. 2017.

Cortez, L. A. B., Lora, E. E. S., & Gómez, E. O. (2014). Biomassa para Energia. 3a reimpressão. Campinas: Editora da Unicamp, pp. 11-733.

Empresa de Pesquisas Energéticas. (2014). Nota técnica DEA 13/14: Demanda de energia 2050. Estudos de Demanda de Energia. Rio de Janeiro. Recuperado de http://www.epe.gov.br/Estudos/Documents/DEA%2013-14%20Demanda%20de%20Energia% 202050.pdf. Acesso em: 12 nov. 2017.

Forman, C., Muritala, I. K., Pardemann, R., & Meyer, B. (2016). Estimating the global waste heat potential. Renewable and Sustainable Energy Reviews. v. 57, pp. 1568–1579. doi: 10.1016/j.rser.2015.12.192. Acesso em: 12 nov. 2017.

Godoy, J. DE F. A. (2016). Resíduos de Floresta Tropical para a Produção de Biomassa como Fonte de Energia (Dissertação de Mestrado em Ciências Ambientais). Universidade Federal de Mato Grosso, Mato Grosso, Brasil. Recuperado de https://www1.ufmt.br › ufmt › unidade › userfiles › publicacoes. Acesso em: 12 nov. 2017.

International Monetary Found. (2017). World economic outlook update. A firming recovery. World Economic Outlook (WEO). Washington, DC. Recuperado de http://www.imf.org/en/Publications/WEO/Issues/2017/07/07/world-economic-outlook-update-july-2017. Acesso em: 12 nov. 2017.

Junior, J. A. de C., Zevallos, A. A. M., Rodriguez, C. J. C., & Mcquay, M. Q. (2018). Combustão Aplicada. Florianópolis-SC: Editora da Universidade Federal de Santa Catarina, pp. 01-372.

Lagemann, V. (2016). Combustão em Caldeiras Industriais: óleos & gás combustível. 1a. Ed. Rio de Janeiro: Interciência, pp. 01-304.

Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2018). Princípios de Termodinâmica para Engenharia. 8a Ed. Rio de Janeiro: LTC, pp. 01-819.

Patel, D. T, Modi, K. V. (2016). Performance Evaluation of Industrial Boiler by Heat Loss Method. International Journal of Emerging Technology and Advanced Engineering, 2(3). Recuperado de http://ijariie.com/AdminUploadPdf/Performance_evaluation_of_industrial_boiler_by_heat_loss_method__ijariie2348.pdf >. Acesso em: 12 nov. 2017.

Pyatalov, A. V., Malyshev, I. V., Shevtsov, S. A., & Yakovlev, N. G. (2014). Determining the Gross Efficiency of a Boiler in Real Time. Power Technology and Enginnering, 48(1), 24-26. doi: 10.1007/s10749-014-0481-2. Acesso em: 12 ago. 2019.

Quirino, W. F., Vale, A. T., Andrade, A. P. A., Abreu, V. L. S., & Azevedo, A. C. S. (2004). Poder calorífico da madeira e de resíduos lignocelulósicos. Biomassa & Energia, 1(2), 173-182. Recuperado de https://scholar.google.com.br/citations?user=7pCq8r8AAAAJ&hl=pt-BR. Acesso em: 12 nov. 2017.

Rolle, K.C. (1999). Thermodynamics and Heat Power. 5a Ed. Rio de Janeiro: Prentice-Hall do Brasil, pp. 01-568.

Saidur, R., Ahamed, J.U., & Masjuki, H. H. (2010). Energy, exergy and economic analysis of industrial boilers. Energy Policy, 38(5), 2188-2197. Acesso em: 12 ago. 2019.

Santos, L. C., Carvalho, A. M. L., Pereira, B. L. C., Oliveira, A. C., Carneiro, A. C. O., & Trugilho, P. F. (2012). Propriedades da madeira e estimativas de massa, carbono e energia de clones de Eucalyptusplantados em diferentes locais. Revista Árvore, 36(5), 971-980. doi: 10.1590/S0100-67622012000500019. Acesso em: 12 ago. 2019.

Senger, R. (2015). Análise do rendimento térmico de uma caldeira mista alimentada com lenha em toras (Trabalho de conclusão de curso). Universidade Tecnológica Federal do Paraná, Ponta Grossa. 63f.

Turns, S. R. (2013). Introdução à Combustão: Conceitos e Aplicações. 3a Ed. Porto Alegre-RS: McGraw-Hill, pp. 01-393.

U.S. Departament of Energy. (2008). Waste heat recovery: Technology and opportunities in U.S. Industry. Washington, DC. Elaborado por: BCS, Incorporated. Recuperado de https://www1.eere.energy.gov/manufacturing/intensiveprocesses/pdfs/waste_heat_recovery.ppd. Acesso em: 12 nov. 2017.

Published

01/01/2020

How to Cite

BARBIERI, R. C.; CAMPOS, J. C. C.; BRITO, R. F.; SIQUEIRA, A. M.; MINETTE, L. J.; ACEVEDO, E. J. Analysis of the Energy Efficiency of a Wood-Powered Industrial Boiler. Research, Society and Development, [S. l.], v. 9, n. 1, p. e58911606, 2020. DOI: 10.33448/rsd-v9i1.1606. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/1606. Acesso em: 24 apr. 2024.

Issue

Section

Engineerings