Production of bio-polyethylene/wood flour biocomposites compatible with PE-g-MA. Assessment of maleic anhydride content in mechanical and thermomechanical properties

Authors

DOI:

https://doi.org/10.33448/rsd-v10i7.16277

Keywords:

Reuse; Wood flour; Biocomposites; Compatibilizer.

Abstract

The production of ecological materials is being encouraged, aiming to minimize environmental impacts and promote greater sustainability. Therefore, this work aimed to develop bio-polyethylene biocomposites (BioPE)/wood flour (WF), using polyethylene grafted with maleic anhydride (PE-g-MA) as a compatibilizer. The biocomposites were prepared in a corrotational twin screw extruder and injection molded. The properties of Izod impact strength, tensile strength, Shore D hardness, Heat Deflection Temperature (HDT) and water absorption were investigated. Impact strength improved when biocomposite BioPE/WF was made compatible with PE-g-MA. This increase was more expressive for 10% of PE-g-MA with a high degree of maleic anhydride grafting, indicating a higher level of interaction between the phases. The BioPE/WF/PE-g-MA biocomposites showed improved elastic modulus, tensile strength, Shore D and HDT hardness, compared to the non-compatible biocomposite. An important aspect was the reduction of water absorption for biocomposites compatible with PE-g-MA, suggesting a greater barrier effect for the diffusion of moisture. From the point of view of the degree of grafting of maleic anhydride in PE-g-MA, in general, impact strength was the most sensitive property. The results indicate that wood flour is a waste with the potential to be reused in the development of biocomposites.

References

Achla, S. N. M., Jacob, J. (2018). Post-yield fracture correlations to morphological and micromechanical response of poly(ε-caprolactone)-based biocomposites. Journal of Thermoplastic Composite Materials, 31(5), 575-597.

Bazan, P., Mierzwinski, D., Bogucki, R., Kuciel, S. (2020a). Bio-Based Polyethylene Composites with Natural Fiber: Mechanical, Thermal, and Ageing Properties. Materials, 13(11), 2595.

Bazan, P., Nosal, P., Kozub, B., Kuciel, S. (2020b). Biobased Polyethylene Hybrid Composites with Natural Fiber: Mechanical, Thermal Properties, and Micromechanics. Materials, 13(13), 2967.

Bezerra, E. B., França, D. C., Morais, D. D. S., Fereira, E. S. B., Araújo, E. M., Wellen, R. M. R. (2017). Comportamento reológico do Bio-PE e do PCL na presença do PEgAA e PEgMA. Matéria (Rio J.), 22(1), e11798.

Bezerra, A. F. C., Carvalho, L. H., Cavalcanti, W. S., Barbosa, A. G. (2016). Mechanical behavior of composites reinforced with fibers caroa. Fibers and Polymers, 17(1), 1908–1915.

Becker, D., Kleinschmidt, A. C., Balzer, P. S., Soldi, V. (2011). Influência da Sequência de Mistura do PP-MA nas Propriedades dos Compósitos de PP e Fibra de Bananeira. Polímeros, 21(1): 7-12.

Bezerra, E. B., França, D. C., Morais, D. D. S., Siqueira, D. D., Araújo, E. M., Wellen, R. M. R. (2019). Toughening of bio-PE upon addition of PCL and PEgAA. REM - International Engineering Journal, 72(3), 469-478.

Castro, D. O., Frollini, E., Marini, J., Filho, A. R. (2013). Preparação e Caracterização de Biocompósitos Baseados em Fibra de Curauá, Biopolietileno de Alta Densidade (BPEAD) e Polibutadieno Líquido Hidroxilado (PBHL). Polímeros, 23(1): 65-73.

Castro, D. O., Filho, A. R., Frollini, E. (2012). Materials prepared from biopolyethylene and curaua fibers: Composites from biomass. Polymer Testing, 31(7), 880-888.

Castro, D. O., Passado, F. R., Filho, A. R., Frollini, E. (2017). Use of castor and canola oils in “biopolyethylene” curauá fiber composites. Composites Part A: Applied Science and Manufacturing, 95(4), 22-30.

Dominici, F., Garcia, D. G., Fombuena, V., Luzi, F., Puglia, D., Torre, L., Balart, R. (2019). Bio-Polyethylene-Based Composites Reinforced with Alkali and Palmitoyl Chloride-Treated Coffee Silverskin. Molecules, 24(17), 3113.

Espinach, F. X., Espinosa, E., Reixach, R., Rodriguez, A., Mutjé, P., Tarrés, Q. (2020). Study on the Macro and Micromechanics Tensile Strength Properties of Orange Tree Pruning Fiber as Sustainable Reinforcement on Bio-Polyethylene Compared to Oil-Derived Polymers and Its Composites. Polymers, 12(10), 2206.

Ferreira, E. S. S., Luna, C. B. B., Araújo, E. M., Siqueira, D. D., Wellen, R. M. R. (2020). Polypropylene/wood powder/ethylene propylene dienemonomer rubber-maleic anhydride composites: Effect of PPmelt flow index on the thermal, mechanical,thermomechanical, water absorption, and morphologicalparameters. Polymer Composites, 42(1), 484–497.

Ferreira, E. S. S., Luna, C. B. B., Araújo, E. M., Siqueira, D. D., Wellen, R. M. R. (2019). Polypropylene/wood powder composites: Evaluation of PP viscosity in thermal, mechanical, thermomechanical, and morphological characters. Journal of Thermoplastic Composite Materials. Epub ahead of print 09 October. DOI: https://doi.org/10.1177/0892705719880958.

Giannetti, A. A. M., Agnelli, J. A. M., Lanças, B. Z., Magnabosco, R., Casarin, S. A., Bettini, S. H. P. (2012). Lignin as additive in polypropylene/coir composites: Thermal, mechanical and morphological properties. Carbohydrate Polymers, 87(4), 2563-2568.

Hanken, R. B. L., Arimatéia, R. R., Farias, G. M. G., Agrawal, P., Santana, L. N. L., Freitas, D. M. G., Mélo, T. J. A. (2019). Effect of natural and expanded vermiculite clays on the properties of eco-friendly biopolyethylene-vermiculite clay biocomposites. Composites Part B: Engineering, 175(10): 107184.

Immoonen, K., Anttila, U., Wikstrom, L. (2019). Coupling of PLA and bleached softwood kraft pulp (BSKP) for enhanced properties of biocomposites. Journal of Thermoplastic Composite Materials, 32(3), 328-341.

Jesus, L. C. C., Luz, S. M., Leão, R. M., Zattera, A. J., Amico, S. C. (2019). Comportamento térmico de compósitos de poliestireno reciclado reforçado com celulose de bagaço de cana. Matéria (Rio J.), 24(3), e-12421.

Kotik, H. G. (2019). Fibras naturais e compósitos reforçados com fibras naturais: a motivação para sua pesquisa e desenvolvimento. Matéria (Rio J.), 24(3), e-12477.

Lima, J. C. C., Brandalise, R. N., Almeida, Y. M. B., Melo, T. J. A., Vinhas, G. M. (2021). Avaliação das propriedades térmicas de misturas PLA/SEBS com moringa submetidas a degradação em ambiente marinho. Research, Society and Development, 10(4), e12210413249.

Lee, M. C., Koay, S. C., Chan, M. Y., Choo, H. L., Pang, M. M., Chou, P. M., Tshai, K. Y. (2020). Properties of poly(lactic acid)/durian husk fiber biocomposites: Effects of fiber content and processing aid. Journal of Thermoplastic Composite Materials, 33(11), 1518-1532.

Luna, C. B. B., Siqueira, D. D., Fereira, E. S. B., Araújo, E. M., Wellen, R. M. R. (2019). Reactive compatilization of PCL/WP upon addition of PCL-MA. Smart option for recycling industry. Materials Research Express, 6(12), 125317.

Luna, C. B. C., Silva, D. F., Araújo, E. M., Melo, T. J. A., Bezerra, E. O. T., Siqueira, D. D., Oliveira, A. D. (2019b). Blends of polystyrene/shoes waste (SBRr): influence of mixture sequence and compatibilizer. Macromolecular Symposia, 383(1), 1800046.

Luna, C. B. B., Fereira, E. S. B., Siqueira, D. D., Silva, W. A., Araújo, E. M., Wellen, R. M. R. (2019c). Tailoring performance of PP/HIPS/SEBS through blending design. Materials Research Express, 6(11), 115321.

Luna, C. B. B., Siqueira, D. D., Fereira, E. S. B., Silva, W. A., Nogueira, J. A. S., Araújo, E. M. (2020). From Disposal to Technological Potential: Reuse of Polypropylene Waste from Industrial Containers as a Polystyrene Impact Modifier. Sustainability, 12(13), 5272.

Luna, C. B. B., Silva, D. F., Araújo, E. M., Mélo, T. J. A., Oliveira, A. D. (2015). Estudo do comportamento mecânico, termomecânico e morfológico de misturas de poliestireno/composto de borracha reciclada (SBR). Matéria (Rio de Janeiro), 20(2), 322-334.

Luna, C. B. B., Silva, D. F., Araújo, E. M., Mélo, T. J. A., Oliveira, A. D. (2016). Efeito dos agentes de compatibilização SBS e SEBS-MA no desempenho de misturas de poliestireno/resíduo de borracha de SBR. Matéria (Rio de Janeiro), 21(3), 632-646.

Marinho, W. S. D., Luna, C. B. B., Araújo, E. M., Lustosa, C. H. A., Filho, C. R. B., Duarte, R. N. C. (2020). From disposal to sustainable development: technological potential of poly (lactic acid)(PLA) blends with 3D filament waste. Research, Society and Development, 9(12), e13291210767.

Morais, D. D. S., Siqueira, D. D., Luna, C. B. B., Araújo, E. M., Bezerra, E. B., Wellen, R. M. R. (2019). Grafting maleic anhydride onto polycaprolactone: influence of processing. Materials Research Express, 6(5), 055315.

Nguyen, T. C., Ruksakulpiwat, C., Ruksakulpiwat, Y. (2020). Effect of cellulose nanofibers from cassava pulp on physical properties of poly(lactic acid) biocomposites. Journal of Thermoplastic Composite Materials, 33(8), 1094-1108.

Poletto, M. (2017). Compósitos termoplásticos com madeira - uma breve revisão. RICA, 2(4), 42-48.

Poletto, M. (2017b). Polypropylene-based wood-plastic composites: Effect of using a coupling agent derived from a renewable resource. Maderas. Ciencia y tecnología, 19(3), 265 – 272.

Raia, R. Z., Iwakiri, S., Trianoski, R., Andrade, A. S., Kowalski, E. L. (2021). Effects of alkali treatment on modification of the Pinus fibers. Matéria (Rio J.), 26(1), e12936.

Rodrigues, A., Carvalho, B. M., Pinheiro, L. A., Bretas, R. E. S., Canevarolo, S. V., Marini, L. (2013). Effect of Compatibilization and Reprocessing on the Isothermal Crystallization Kinetics of Polypropylene/Wood Flour Composites. Polímeros, 23(3), 312-319.

Silva, W. A., Luna, C. B. B., Melo, J. B. C. A., Araújo, E. M., Filho, E. A. S., Duarte, R. N. C. (2021). Feasibility of Manufacturing Disposable Cups using PLA/PCL Composites Reinforced with Wood Powder. Journal of Polymers and the Environment, Epub ahead of print 19 February 2021. DOI: https://doi.org/10.1007/s10924-021-02076-8.

Silva, D. F., Luna, C. B. B., Araújo, E. M., Silva, A. L. (2016). Blendas poliméricas: conceitos, obtenção e aplicações. Revista de engenharia e tecnologia, 8(1), 58-77.

Siqueira, D. D., Luna, C. B. B., Fereira, E. S. B., Araújo, E. M., Wellen, R. M. R. (2020). Tailored PCL/Macaíba fiber to reach sustainable biocomposites. Journal of Materials Research and Technology, 9(5), 9691-9708.

Siqueira, D. D., Luna, C. B. B., Araújo, E. M., Fereira, E. S. B., Wellen, R. M. R. (2019). Biocomposites based on PCL and macaiba fiber. Detailed characterization of main properties. Materials Research Express, 6(9), 095335.

Siqueira, D. D., Luna, C. B. B., Araújo, E. M., Barros, A. B. S., Wellen, R. M. R. (2021). Approaches on PCL/macaíba biocomposites - mechanical, thermal, morphological properties and crystallization kinetics. Polymers for Advanced Technologies. Epub ahead of print 06 May. DOI: https://doi.org/10.1002/pat.5367.

Tarrés, Q., Díaz, D. H., Ardanuy, M. (2021). Interface Strength and Fiber Content Influence on Corn Stover Fibers Reinforced Bio-Polyethylene Composites Stiffness. Polymers, 13(5), 768.

Tarrés, Q.,Melbo, J. K., Aguilar, M. D., Espinach, F. X., Mutjé, P., Carrasco, G. C. (2018). Bio-polyethylene reinforced with thermomechanical pulp fibers: Mechanical and micromechanical characterization and its application in 3D-printing by fused deposition modelling. Composites Part B: Engineering, 153 (11), 70-77.

Tarrés, Q., Ardanuy, M. (2020). Evolution of Interfacial Shear Strength and Mean Intrinsic Single Strength in Biobased Composites from Bio-Polyethylene and Thermo-Mechanical Pulp-Corn Stover Fibers. Polymers, 12(6), 1308.

Takemori, M. T. (1979). Towards an understanding of the heat distortion temperature of thermoplastics. Polymer Engineering & Science, 19(15), 1104–1109.

Wang, X., Guo, C., Song, K. (2020). The effects of maleated polybutadiene‐grafted polypropylene (MAPB‐g‐PP) content on the properties of wood flour/polypropylene composites. Journal of Vinyl and Additive Technology, 26(1), 17-23.

Wearn, Y. N., Montagna, L. S., Passador, F. R. (2020). Compósitos de fibra de coco/LDPE: efeito do tratamento superficial das fibras de coco em compósitos verdes. Matéria (Rio J.), 25(1), e-12548.

Zahari, W. Z. W., Badri, R. N. R. L., Ardyananta, H., Kurniawan, D., Nor, F. M. (2015). Mechanical properties and water absorption behavior of polypropylene/ljuk fiber composite by using silane treatment. Procedia Manufacturing, 2(1), 573-578.

Published

20/06/2021

How to Cite

SILVA, F. S. da .; SILVA, W. A. da .; LUNA, C. B. B. .; FERREIRA , E. da S. B. .; ARAÚJO, E. M. . Production of bio-polyethylene/wood flour biocomposites compatible with PE-g-MA. Assessment of maleic anhydride content in mechanical and thermomechanical properties. Research, Society and Development, [S. l.], v. 10, n. 7, p. e23310716277, 2021. DOI: 10.33448/rsd-v10i7.16277. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/16277. Acesso em: 19 apr. 2024.

Issue

Section

Engineerings