Soil microbiota on disease tolerance in plants: A review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i8.17161

Keywords:

Mycorrhizae; Soil microorganisms; Induced systemic resistance; Rhizobia

Abstract

Interactions between plants and microbiota in the rhizosphere are one of the most important factors of plants sanity and soil fertility. The microbiota is complex, comprising numerous microorganisms, including arbuscular mycorrhizae and rhizobia are of great importance for plant health and productivity. The aim of this review was to characterize the symbiotic mycorrhizal and nitrogen-fixing bacteria and their relationship with plant diseases tolerance. Through a qualitative literature review, information on the effects of microbiota on plant disease tolerance was compiled. According to the reviewed literature, arbuscular mycorrhizae symbiosis, in phosphorus limiting condition, influences the vegetal community development, nutrients absorption, water relations and productivity. Mycorrhizae act as bio protectors against biotic and abiotic stress, beyond activation of plant defense mechanisms through induced resistance. Rhizobia can be considered biocontrol agents, contributing for plant sanity through the direct inhibition of phytopathogens, as observed by the mechanism of induced systemic resistance. Symbiosis stimulate the synthesis of metabolites that act protecting roots against phytopathogens through antibiosis and exudates liberation. It has concluded that both symbiosis contribute to more sustainable cultivation practices, to increase production and reduce the incidence of phytopathogens.

References

Ahmed, T., Shahid, M., Noman, M., Hussain, S., Khan, M. A., Zubair, M., Ismail, M., Manzoor, N., Shahzad, T., & Mahmood, F. (2019). Plant Growth-Promoting Rhizobacteria as Biological Tools for Nutrient Management and Soil Sustainability. Plant Growth Promoting Rhizobacteria for Agricultural Sustainability, 95–110. doi.org/10.1007/978-981-13-7553-8_5

Al-Ani, R. A., Adhab, M. A., Mahdi, M. H., & Abood, H. M. (2012). Rhizobium japonicum as a biocontrol agent of soybean root rot disease caused by Fusarium solani and Macrophomina phaseolina. Plant Protection Science, 48(4), 149–155. doi.org/10.17221/16/2012-pps

Bødker, L., Kjøller, R., Kristensen, K., & Rosendahl, S. (2002). Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza, 12(1), 7–12. doi.org/10.1007/s00572-001-0139-4

Bonfante, P., & Genre, A. (2010). Mechanisms underlying beneficial plant - Fungus interactions in mycorrhizal symbiosis. Nature Communications, 1(4), 1–11. doi.org/10.1038/ncomms1046

Cameron, D. D., Neal, A. L., van Wees, S. C. M., & Ton, J. (2013). Mycorrhiza-induced resistance: More than the sum of its parts? Trends in Plant Science, 18(10), 539–545. doi.org/10.1016/j.tplants.2013.06.004

Campos, M. A. da S. (2020). Bioprotection by arbuscular mycorrhizal fungi in plants infected with Meloidogyne nematodes: A sustainable alternative. Crop Protection, 135(September 2019), 105203. doi.org/10.1016/j.cropro.2020.105203

Cardoso, I. M., & Kuyper, T. W. (2006). Mycorrhizas and tropical soil fertility. Agriculture, Ecosystems and Environment, 116(1–2), 72–84. https://doi.org/10.1016/j.agee.2006.03.011

Chandrasekaran, M. (2020). A meta-analytical approach on arbuscular mycorrhizal fungi inoculation efficiency on plant growth and nutrient uptake. Agriculture, 10(9), 1–12. doi.org/10.3390/agriculture10090370

Diagne, N., Ngom, M., Djighaly, P. I., Fall, D., Hocher, V., & Svistoonoff, S. (2020). Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity, 12(10), 1–25. doi.org/10.3390/d12100370

Díaz-Valle, A., López-Calleja, A. C., & Alvarez-Venegas, R. (2019). Enhancement of Pathogen Resistance in Common Bean Plants by Inoculation With Rhizobium etli. Frontiers in Plant Science, 10(October), 1–19. doi.org/10.3389/fpls.2019.01317

Evelin, H., Kapoor, R., & Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Annals of Botany, 104(7), 1263–1280. doi.org/10.1093/aob/mcp251

Genre, A., Lanfranco, L., Perotto, S., & Bonfante, P. (2020). Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 18(11), 649–660. doi.org/10.1038/s41579-020-0402-3

He, Y., Pantigoso, H. A., Wu, Z., & Vivanco, J. M. (2019). Co-inoculation of Bacillus sp. and Pseudomonas putida at different development stages acts as a biostimulant to promote growth, yield and nutrient uptake of tomato. Journal of Applied Microbiology, 127(1), 196–207. doi.org/10.1111/jam.14273

Hu, J., Wei, Z., Friman, V. P., Gu, S. H., Wang, X. F., Eisenhauer, N., Yang, T. J., Ma, J., Shen, Q. R., Xu, Y. C., & Jousset, A. (2016). Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression. MBio, 7(6), 1–8. doi.org/10.1128/mBio.01790-16

Jacott, C. N., Murray, J. D., & Ridout, C. J. (2017). Trade-offs in arbuscular mycorrhizal symbiosis: Disease resistance, growth responses and perspectives for crop breeding. Agronomy, 7(4), 1–18. doi.org/10.3390/agronomy7040075

Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A., & Pozo, M. J. (2012). Mycorrhiza-Induced Resistance and Priming of Plant Defenses. Journal of Chemical Ecology, 38(6), 651–664. doi.org/10.1007/s10886-012-0134-6

Kalantari, S., Marefat, A., Naseri, B., & Hemmati, R. (2018). Improvement of bean yield and Fusarium root rot biocontrol using mixtures of Bacillus, Pseudomonas and Rhizobium. Tropical Plant Pathology, 43(6), 499–505. doi.org/10.1007/s40858-018-0252-y

Karoney, E. M., Ochieno, D. M. W., Baraza, D. L., Muge, E. K., Nyaboga, E. N., & Naluyange, V. (2020). Rhizobium improves nutritive suitability and tolerance of Phaseolus vulgaris to Colletotrichum lindemuthianum by boosting organic nitrogen content. Applied Soil Ecology, 149(January), 103534. doi.org/10.1016/j.apsoil.2020.103534

Khatoon, Z., Huang, S., Rafique, M., Fakhar, A., Kamran, M. A., & Santoyo, G. (2020). Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. Journal of Environmental Management, 273(April), 111118. doi.org/10.1016/j.jenvman.2020.111118

Kumari, S. M. P., & Prabina, B. J. (2019). Protection of Tomato, Lycopersicon esculentum from Wilt Pathogen, Fusarium oxysporum f.sp. lycopersici by Arbuscular Mycorrhizal Fungi, Glomus sp. International Journal of Current Microbiology and Applied Sciences, 8(04), 1368–1378. doi.org/10.20546/ijcmas.2019.804.159

Li, Y., Chapman, S. J., Nicol, G. W., & Yao, H. (2018). Nitrification and nitrifiers in acidic soils. Soil Biology and Biochemistry, 116(November 2017), 290–301. doi.org/10.1016/j.soilbio.2017.10.023

Lin, C., Wang, Y., Liu, M., Li, Q., Xiao, W., & Song, X. (2020). Effects of nitrogen deposition and phosphorus addition on arbuscular mycorrhizal fungi of Chinese fir (Cunninghamia lanceolata). Scientific Reports, 10(1), 1–8. doi.org/10.1038/s41598-020-69213-6

Liu, J., Maldonado-Mendoza, I., Lopez-Meyer, M., Cheung, F., Town, C. D., & Harrison, M. J. (2007). Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant Journal, 50(3), 529–544. doi.org/10.1111/j.1365-313X.2007.03069.x

Ma, R., Zhao, W., Zhao, Y., Wang, Z., Zhu-Barker, X., Wright, A. L., & Jiang, X. (2020). Land use pattern effects after 30 years of shifting cropland to fallow land on soil ammonia-oxidizer community. Applied Soil Ecology, 156(October 2019), 103707. doi.org/10.1016/j.apsoil.2020.103707

Mabrouk, Y., Hemissi, I., Salem, I. Ben, Mejri, S., Saidi, M., & Belhadj, O. (2018). Potential of Rhizobia in Improving Nitrogen Fixation and Yields of Legumes. Symbiosis. doi.org/10.5772/intechopen.73495

Manhaes, C. M. C., & Francelino, F. M. A. (2013). Biota of Soil and Its Relations With the Ecological System Root. Nucleus, 10(2), 127–137. doi.org/10.3738/1982.2278.815

Masson-Boivin, C., & Sachs, J. L. (2018). Symbiotic nitrogen fixation by rhizobia — the roots of a success story. Current Opinion in Plant Biology, 44, 7–15. doi.org/10.1016/j.pbi.2017.12.001

Mathur, S., & Jajoo, A. (2020). Arbuscular mycorrhizal fungi protects maize plants from high temperature stress by regulating photosystem II heterogeneity. Industrial Crops and Products, 143(September 2019), 111934. doi.org/10.1016/j.indcrop.2019.111934

Miozzi, L., Vaira, A. M., Brilli, F., Casarin, V., Berti, M., Ferrandino, A., Nerva, L., Accotto, G. P., & Lanfranco, L. (2020). Arbuscular mycorrhizal symbiosis primes tolerance to cucumber mosaic virus in tomato. Viruses, 12(6), 1–19. doi.org/10.3390/v12060675

Omotayo, O. P., & Babalola, O. O. (2020). Resident rhizosphere microbiome’s ecological dynamics and conservation: Towards achieving the envisioned Sustainable Development Goals, a review. International Soil and Water Conservation Research, (9), 127-142. doi.org/10.1016/j.iswcr.2020.08.002

Padrão, J., Tortella, G., Cortez, S., Dias, N., Nicolau, A., & Mota, M. (2019). Nitrifying Soil Bacterium Nitrosomonas europaea: Operational Improvement of Standard Culture Medium. Journal of Soil Science and Plant Nutrition, 19(2), 270–276. doi.org/10.1007/s42729-019-00023-0

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da Pesquisa Científica. Santa Maria, Brasil: Núcleo de Tecnologia Educacional da Universidade Federal de Santa Maria.

Pozo, M. J., Jung, S. C., López-Ráez, J. A., Azéon-Aguilar, C. (2010). Impact of Arbuscular Mycorrhizal Symbiosis on Plant Response to Biotic Stress: The Role of Plant Defence Mechanisms. Arbuscular Mycorrhizas: Physiology and Function, 193-207. doi.org/10.1007/978-90-481-9489-6_9

Rillig, M. C. (2004). Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science, 84(4), 355–363. doi.org/10.4141/S04-003

Sergeevich, S. A., Alexandrovich, Z. V., Yurievna, S. O., & Yurievich, B. A. (2015). Nod-Factor Signaling in Legume-Rhizobial Symbiosis. Plants for the future, 135-160. dx.doi.org/10.5772/61165

Sikes, B. A. (2010). When do arbuscular mycorrhizal fungi protect plant roots from pathogens? Plant Signaling and Behavior, 5(6), 763–765. doi.org/10.4161/psb.5.6.11776

Song, Y., Chen, D., Lu, K., Sun, Z., & Zeng, R. (2015). Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Frontiers in Plant Science, 6(September), 1–13. doi.org/10.3389/fpls.2015.00786

Spagnoletti, F. N., Cornero, M., Chiocchio, V., Lavado, R. S., & Roberts, I. N. (2020). Arbuscular mycorrhiza protects soybean plants against Macrophomina phaseolina even under nitrogen fertilization. European Journal of Plant Pathology, 156(3), 839–849. doi.org/10.1007/s10658-020-01934-w

Tian, L., Lin, X., Tian, J., Ji, L., Chen, Y., Tran, L. S. P., & Tian, C. (2020). Research advances of beneficial microbiota associated with crop plants. International Journal of Molecular Sciences, 21(5), 1–18. doi.org/10.3390/ijms21051792

Tian, L., Shi, S., Ma, L., Zhou, X., Luo, S., Zhang, J., Lu, B., & Tian, C. (2019). The effect of Glomus intraradices on the physiological properties of Panax ginseng and on rhizospheric microbial diversity. Journal of Ginseng Research, 43(1), 77–85. doi.org/10.1016/j.jgr.2017.08.005

Tonelli, M. L., Figueredo, M. S., Rodríguez, J., Fabra, A., & Ibañez, F. (2020). Induced systemic resistance -like responses elicited by rhizobia. Plant and Soil, 448(1–2), 1–14. doi.org/10.1007/s11104-020-04423-5

Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T., & Singh, B. K. (2020). Plant–microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology, 18(11), 607–621. doi.org/10.1038/s41579-020-0412-1

Wang, Y. Y., Yin, Q. S., Qu, Y., Li, G. Z., & Hao, L. (2017). Arbuscular mycorrhiza-mediated resistance in tomato against Cladosporium fulvum-induced mould disease. Journal of Phytopathology, 166(1), 67–74. doi.org/10.1111/jph.1266

Published

11/07/2021

How to Cite

VILA, V. V. e .; REZENDE, R. .; MALDONADO-SILVA, L. H.; NOCCHI, R. C. de F. .; ANDREAN, A. F. B.; WENNECK, G. S. .; TERASSI, D. de S. .; MATUMOTO-PINTRO, P. T. Soil microbiota on disease tolerance in plants: A review. Research, Society and Development, [S. l.], v. 10, n. 8, p. e25910817161, 2021. DOI: 10.33448/rsd-v10i8.17161. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/17161. Acesso em: 13 jul. 2024.

Issue

Section

Agrarian and Biological Sciences