Influence of functionalized nanosilica with different functional groups in the properties of cementitious composites: A review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i8.17349

Keywords:

Cementitious composites; Functional groups; Supplementary nano cementitious material; Functionalized nanosilica.

Abstract

The use of supplementary nano cementitious material (SNCM) to improve the mechanical properties and durability performances of cementitious composites (cement paste, mortar and concrete) has received remarkable attention in recent studies. The use of nanosilica as SNCM is a consolidated practice in the scientific community. However, recent developments in the synthesis of monodisperse and narrow-size distribution of nanoparticles by functionalization methods provide a significant improvement to the development of silica-group nano composites (among the functional groups: amine, carboxyls and glycol groups), the so-called functionalized nanosilica (FNS). This article aims to raise a literature review on the properties of FNS in cementitious materials and the advanced techniques of nano/micro structural analysis used to characterize cementitious composites containing FNS’s.

Author Biographies

Yuri Sotero Bomfim Fraga, Universidade de Brasília

Doutorando (início em março/2019 e previsão de conclusão em dezembro/2022) e mestre (2019) em Estruturas e Construção Civil pela Universidade de Brasília - UnB. Especialista em Engenharia de Segurança do Trabalho pela Universidade Candido Mendes - UCAM (2018), pós-graduando em Especialização em Engenharia de Estruturas de Concreto Armado pela Faculdade Única de Ipatinga - FUNIP, graduado em Engenharia Civil pela Universidade Tiradentes - UNIT (2016) e em Inglês pelo Fisk (2012). Possui experiência na construção, orçamento e planejamento de conjuntos habitacionais populares, edificações verticais de alto padrão e Obras de Arte Especiais - OAEs, além de atuação como docente nas disciplinas Geometria Construtiva, Projeto Arquitetônico, Hidráulica, Hidrologia Geral, Instalações Elétricas, Instalações Hidráulicas, Prevenção e Combate de Incêndio e SPDA e Materiais de Construção I e II. Em 2019 atuou como professor substituto do Departamento de Engenharia Civil e Ambiental da UnB na área de sistemas construtivos e materiais de construção e atualmente desenvolve projetos de engenharia (arquitetônico, elétrico, hidrossanitário e combate a incêndio) com auxílio dos softwares Revit, QiElétrico e QiHidrossanitário. Os principais temas de pesquisa são: materiais cimentícios suplementares, nanomateriais, concreto de alto desempenho, microestrutura do concreto e tecnologia BIM.

Gabriel Lima Oliveira Martins, Universidade de Brasília

Graduado em Engenharia Civil pela Universidade Federal do Piauí (UFPI) no ano de 2014 com especialização em Engenharia de Saneamento Básico e Ambiental no Instituto Brasileiro de Educação Continuada (INBEC). Mestrado em Estruturas e Construção Civil pela Universidade de Brasilia - UnB. Atualmente doutorando na Universidade de Brasília na área de Estruturas e Construção civil.

João Henrique da Silva Rêgo, Universidade de Brasília

Possui graduação em Engenharia Civil pela Universidade Federal de Goiás (1996), mestrado em Engenharia Civil pela Universidade Federal de Goiás (2001), doutorado em Estruturas e Construção Civil pela Universidade de Brasília (2004), Pós-Doutorado PRODOC na Universidade Federal de Goiás (2007) e Pós-Doutorado na Universidad Politécnica de Catalunya/Universidad Politecnica de Madrid/Instituto Eduardo Torroja-Madrid (2017). Atualmente é Professor Associado II do Departamento de Engenharia Civil e Ambiental e Coordenador do Programa de Pós-graduação em Estruturas e Construção Civil da Universidade de Brasília. Tem experiência na área de Engenharia Civil, com ênfase em Materiais de Construção, atuando principalmente nos seguintes temas: adição mineral, pozolanas, cimento portland, resíduo agroindustrial, microestrutura do concreto, patologia das construções, técnicas de análise microestrutural, nanossilica, nanotecnologia dos materiais cimentícios.

References

Azevedo, N. H. de, & Gleize, P. J. P. (2018). Effect of silicon carbide nanowhiskers on hydration and mechanical properties of a Portland cement paste. Construction and Building Materials, 169, 388–395. https://doi.org/10.1016/j.conbuildmat.2018.02.185

Cai, Y., Hou, P., Cheng, X., Du, P., & Ye, Z. (2017). The effects of nanoSiO 2 on the properties of fresh and hardened cement-based materials through its dispersion with silica fume. Construction and Building Materials, 148, 770–780. https://doi.org/10.1016/j.conbuildmat.2017.05.091

Chithra, S., Senthil Kumar, S. R. R., & Chinnaraju, K. (2016). The effect of Colloidal Nano-silica on workability, mechanical and durability properties of High Performance Concrete with Copper slag as partial fine aggregate. Construction and Building Materials, 113, 794–804. https://doi.org/10.1016/j.conbuildmat.2016.03.119

Collodetti, G., Gleize, P. J. P., & Monteiro, P. J. M. (2014). Exploring the potential of siloxane surface modified nano-SiO2 to improve the Portland cement pastes hydration properties. Construction and Building Materials, 54, 99–105. https://doi.org/10.1016/j.conbuildmat.2013.12.028

Feng, P., Chang, H., Liu, X., Ye, S., Shu, X., & Ran, Q. (2020). The significance of dispersion of nano-SiO2 on early age hydration of cement pastes. Materials and Design, 186, 108320. https://doi.org/10.1016/j.matdes.2019.108320

Fraga, Y. S. B., Rêgo, J. H. da S., Capuzzo, V. M. S., Andrade, D. da S., & Morais, P. C. (2020). Ultrasonication and synergistic effects of silica fume and colloidal nanosilica on the C–S–H microstructure. Journal of Building Engineering, 32(March), 101702. https://doi.org/10.1016/j.jobe.2020.101702

Gu, Y., Ran, Q., She, W., & Liu, J. (2017). Modifying Cement Hydration with NS@PCE Core-Shell Nanoparticles. Advances in Materials Science and Engineering, 2017(1), 1–13. https://doi.org/10.1155/2017/3823621

Gu, Y., Ran, Q., She, W., Shu, X., & Liu, J. (2018). Effects and mechanisms of surface-treatment of cementitious materials with nanoSiO2@PCE core-shell nanoparticles. Construction and Building Materials, 166, 12–22. https://doi.org/10.1016/j.conbuildmat.2018.01.082

Gu, Y., Ran, Q., Shu, X., Yu, C., Chang, H., & Liu, J. (2016). Synthesis of nanoSiO2@PCE core-shell nanoparticles and its effect on cement hydration at early age. Construction and Building Materials, 114, 673–680. https://doi.org/10.1016/j.conbuildmat.2016.03.093

Gu, Y., Wei, Z., Ran, Q., Shu, X., Lv, K., & Liu, J. (2017). Characterizing cement paste containing SRA modified nanoSiO2 and evaluating its strength development and shrinkage behavior. Cement and Concrete Composites, 75, 30–37. https://doi.org/10.1016/j.cemconcomp.2016.11.001

Gu, Y., Xia, K., Wei, Z., Jiang, L., She, W., & Lyu, K. (2020). Synthesis of nanoSiO2@graphene-oxide core-shell nanoparticles and its influence on mechanical properties of cementitious materials. Construction and Building Materials, 236, 117619. https://doi.org/10.1016/j.conbuildmat.2019.117619

Guo, L., Wu, J., & Wang, H. (2020). Mechanical and perceptual characterization of ultra-high-performance cement-based composites with silane-treated graphene nano-platelets. Construction and Building Materials, 240, 117926. https://doi.org/10.1016/j.conbuildmat.2019.117926

Huang, C., & Wang, D. (2017). Surface Modification of Nano-SiO2 Particles with Polycarboxylate Ether-Based Superplasticizer under Microwave Irradiation. ChemistrySelect, 2(29), 9349–9354. https://doi.org/10.1002/slct.201701493

Huang, C., Wang, Y., Zhao, J., & Wang, D. (2020). Potential Effect of Surface Modified Nano-SiO2 with PDDA on the Cement Paste Early Hydration. ChemistrySelect, 5(11), 3159–3163. https://doi.org/10.1002/slct.201904791

Khalil, M., Saeed, S., & Ahmad, Z. (2007). Mechanical and Thermal Properties of Polyimide/Silica Hybrids with Imide-Modified Silica Network Structures. Wiley InterScience. https://doi.org/10.1002/app

Kong, D., Su, Y., Du, X., Yang, Y., Wei, S., & Shah, S. P. (2013). Influence of nano-silica agglomeration on fresh properties of cement pastes. Construction and Building Materials, 43, 557–562. https://doi.org/10.1016/j.conbuildmat.2013.02.066

Kontoleontos, F., Tsakiridis, P. E., Marinos, A., Kaloidas, V., & Katsioti, M. (2012). Influence of colloidal nanosilica on ultrafine cement hydration: Physicochemical and microstructural characterization. Construction and Building Materials, 35, 347–360. https://doi.org/10.1016/j.conbuildmat.2012.04.022

Liu, X., Feng, P., Shu, X., & Ran, Q. (2020). Effects of highly dispersed nano-SiO2 on the microstructure development of cement pastes. Materials and Structures/Materiaux et Constructions, 53(1), 1–12. https://doi.org/10.1617/s11527-019-1431-0

Mariano, A. M., & Rocha Santos, M. (2017). Revisão da Literatura: Apresentação de uma Abordagem Integradora Structural Equations View project Service Quality View project. XXVI Congreso Internacional de La Academia Europea de Dirección y Economía de La Empresa (AEDEM), September, v.26. https://www.researchgate.net/publication/319547360

Martins, G. L. O., Fraga, Y. S. B., Vasconcellos, J. S., & da S. Rêgo, J. H. (2020). Synthesis and characterization of functionalized nanosilica for cementitious composites: review. Journal of Nanoparticle Research, 22(11). https://doi.org/10.1007/s11051-020-05063-7

Monasterio, M., Gaitero, J. J., Erkizia, E., Guerrero Bustos, A. M., Miccio, L. A., Dolado, J. S., & Cerveny, S. (2015). Effect of addition of silica- and amine functionalized silica-nanoparticles on the microstructure of calcium silicate hydrate (C-S-H) gel. Journal of Colloid and Interface Science, 450, 109–118. https://doi.org/10.1016/j.jcis.2015.02.066

Nair, D. G., Fraaij, A., Klaassen, A. A. K., & Kentgens, A. P. M. (2008). A structural investigation relating to the pozzolanic activity of rice husk ashes. Cement and Concrete Research, 38(6), 861–869. https://doi.org/10.1016/j.cemconres.2007.10.004

Perez, G., Gaitero, J. J., Erkizia, E., Jimenez, I., & Guerrero, A. (2015). Characterisation of cement pastes with innovative self-healing system based in epoxy-amine adhesive. Cement and Concrete Composites, 60, 55–64. https://doi.org/10.1016/j.cemconcomp.2015.03.010

Reches, Y. (2018). Nanoparticles as concrete additives: Review and perspectives. Construction and Building Materials, 175, 483–495. https://doi.org/10.1016/j.conbuildmat.2018.04.214

Ren, C., Hou, L., Li, J., Lu, Z., & Niu, Y. (2020). Preparation and properties of nanosilica-doped polycarboxylate superplasticizer. Construction and Building Materials, 252, 119037. https://doi.org/10.1016/j.conbuildmat.2020.119037

Rong, Z., Zhao, M., & Wang, Y. (2020). Effects of modified nano-SiO2 particles on properties of high-performance cement-based composites. Materials, 13(3), 1–12. https://doi.org/10.3390/ma13030646

Senff, L., Hotza, D., Repette, W. L., Ferreira, V. M., & Labrincha, J. A. (2010). Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design. Construction and Building Materials, 24(8), 1432–1437. https://doi.org/10.1016/j.conbuildmat.2010.01.012

Singh, L. P., Bhattacharyya, S. K., Shah, S. P., Mishra, G., & Sharma, U. (2016). Studies on early stage hydration of tricalcium silicate incorporating silica nanoparticles: Part II. Construction and Building Materials, 102, 943–949. https://doi.org/10.1016/j.conbuildmat.2015.05.084

Sun, J., Shi, H., Qian, B., Xu, Z., Li, W., & Shen, X. (2017). Effects of synthetic C-S-H/PCE nanocomposites on early cement hydration. Construction and Building Materials, 140, 282–292. https://doi.org/10.1016/j.conbuildmat.2017.02.075

Varghese, L., Kanta Rao, V. V. L., & Parameswaran, L. (2019). Nanosilica-added concrete: Strength and its correlation with time-dependent properties. Proceedings of Institution of Civil Engineers: Construction Materials, 172(2), 85–94. https://doi.org/10.1680/jcoma.17.00031

Vasconcellos, J. S., Martins, G. L. O., de Almeida Ribeiro Oliveira, G., Lião, L. M., da Silva Rêgo, J. H., & Sartoratto, P. P. C. (2020). Effect of amine functionalized nanosilica on the cement hydration and on the physical-mechanical properties of Portland cement pastes. Journal of Nanoparticle Research, 22(8). https://doi.org/10.1007/s11051-020-04940-5

Wang, J., White, W. B., & Adair, J. H. (2006). Evaluation of dispersion methods for silica-based composite nanoparticles. Journal of the American Ceramic Society, 89(7), 2359–2363. https://doi.org/10.1111/j.1551-2916.2006.01064.x

Xu, G., Zhang, J., & Song, G. (2003). Effect of complexation on the zeta potential of silica powder. Powder Technology, 134(3), 218–222. https://doi.org/10.1016/S0032-5910(03)00172-4

Downloads

Published

12/07/2021

How to Cite

FRAGA, Y. S. B.; MARTINS, G. L. O.; RÊGO, J. H. da S. Influence of functionalized nanosilica with different functional groups in the properties of cementitious composites: A review. Research, Society and Development, [S. l.], v. 10, n. 8, p. e27719817349, 2021. DOI: 10.33448/rsd-v10i8.17349. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/17349. Acesso em: 24 apr. 2024.

Issue

Section

Engineerings