Neuroprotective effects of taurine on SH-SY5Y cells under hydrocortisone induced stress

Authors

DOI:

https://doi.org/10.33448/rsd-v10i9.18426

Keywords:

Alzheimer's Disease; Oxidative Stress; Neuroprotection; Hydrocortisone.

Abstract

Alzheimer's disease (AD) is the most common, progressive and irreversible neurodegenerative disorder, characterized by memory loss, cognitive impairment and behavioral abnormalities. Although there is no cure, several study strategies seek to elucidate mechanisms of the disease. Recent studies address the benefits of taurine. Thus, the present study aims to analyze neuroprotective effects of taurine in human neuroblastoma (SH-SY5Y), using an in vitro experimental model of oxidative stress induced by hydrocortisone. This work showed for the first time that taurine can promote neuroprotection in SH-SY5Y under oxidative stress caused by hydrocortisone. Cell viability was evaluated using crystal violet and the evaluation of cell morphology was performed by scanning electron microscopy (SEM). The viability of SH-SY5Y pre-treated with taurine and stressed with hydrocortisone was preserved, compared to the stressed only group, which was also morphologically observed. Therefore, taurine can represent a considerable therapeutic candidate in the prevention of neurodegenerative diseases, such as AD.

Author Biography

Alessandro Eustaquio Campos Granato, Universidade de São Paulo

 

 

 

 

 

References

Baker-Nigh, A., Vahedi, S., Davis, E. G., Weintraub, S., Bigio, E. H., Klein, W. L., & Geula, C. (2015). Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer’s disease. Brain, 138(6), 1722–1737. https://doi.org/10.1093/brain/awv024

Barbosa, M. G. A. et. al. (2020). The use of Canabidiol compound in the treatment of Alzheimer’s disease(literature review). Journal of Chemical Information and Modeling, 53(9), 1689–1699.

Belyaev, N. D., Kellett, K. A. B., Beckett, C., Makova, N. Z., Revett, T. J., Nalivaeva, N. N., Hooper, N. M., & Turner, A. J. (2010). The transcriptionally active amyloid precursor protein (APP) intracellular domain is preferentially produced from the 695 isoform of APP in a β-secretase-dependent pathway. Journal of Biological Chemistry, 285(53), 41443–41454. https://doi.org/10.1074/jbc.M110.141390

Conrado, A. B., Maina, S., Moseley, H., Francioso, A., Mosca, L., Capuozzo, E., & Fontana, M. (2017). Neuroprotective Effect of Taurine-Rich Cuttlefish (Sepia officinalis) Extract Against Hydrogen Peroxide-Induced Oxidative Stress in SH-SY5Y Cells. 975, 551–561. https://doi.org/10.1007/978-94-024-1079-2

Corrêa, M. S., Vedovelli, K., Giacobbo, B. L., de Souza, C. E. B., Ferrari, P., de Lima Argimon, I. I., Walz, J. C., Kapczinski, F., & Bromberg, E. (2015). Psychophysiological correlates of cognitive deficits in family caregivers of patients with Alzheimer Disease. Neuroscience, 286, 371–382. https://doi.org/10.1016/j.neuroscience.2014.11.052

Corrêa, Márcio Silveira, Giacobbo, B. L., Vedovelli, K., De Lima, D. B., Ferrari, P., De Lima Argimon, I. I., CesarWalz, J., & Bromberg, E. (2016). Age effects on cognitive and physiological parameters in familial caregivers of Alzheimer’s disease patients. PLoS ONE, 11(10), 1–16. https://doi.org/10.1371/journal.pone.0162619

Curto, M., Martocchia, A., Ferracuti, S., Comite, F., Scaccianoce, S., Girardi, P., Nicoletti, F., & Falaschi, P. (2017). Increased Total Urinary Cortisol (tUC) and Serum Brain-derived Neurotrophic Factor (BDNF) Ratio in Alzheimer Disease (AD)-affected Patients. Alzheimer Disease and Associated Disorders, 31(2), 173–176. https://doi.org/10.1097/WAD.0000000000000156

Dailton Guedes de Oliveira Moraes, C., Henrique Godoi, B., Chaves Silva Carvalho, I., Cristina Pinto, J., Carvalho Rossato, R., Soares da Silva, N., & Pacheco Soares, C. (2019). Genotoxic effects of photodynamic therapy in laryngeal cancer cells – An in vitro study. Experimental Biology and Medicine, 244(3), 262–271. https://doi.org/10.1177/1535370219826544

Falco, A., Cukierman, D. S., Hauser-Davis, R. A., & Rey, N. A. (2016). Doença de Alzheimer: Hipóteses etiológicas e perspectivas de tratamento. Quimica Nova, 39(1), 63–80. https://doi.org/10.5935/0100-4042.20150152

La Rubia Ortí, J. E., Castillo, S. S., Benlloch, M., Rochina, M. J., Arreche, S. C., & García-Pardo, M. P. (2017). Impact of the relationship of stress and the immune system in the appearance of Alzheimer’s disease. Journal of Alzheimer’s Disease, 55(3), 899–903. https://doi.org/10.3233/JAD-160903

Gnegy, M. E. (2012). Catecholamines. Basic Neurochemistry, 283–299. https://doi.org/10.1016/B978-0-12-374947-5.00014-6

Grothe, M. J., Schuster, C., Bauer, F., Prudlo, J., Teipel, S. J., & Heinsen, H. (2014). Atrophy of the cholinergic basal forebrain in dementia with lewy bodies and alzheimer’s disease dementia. Journal of Neurology, 261(1), 1939–1948. https://doi.org/10.1007/s00415-014-7439-z

Hansen, S. H., Andersen, M. L., Cornett, C., Gradinaru, R., & Grunnet, N. (2010). A role for taurine in mitochondrial function. Journal of Biomedical Science, 17(SUPPL. 1), 1–8. https://doi.org/10.1186/1423-0127-17-S1-S23

Inelia Morales, G., Gonzalo Faŕas, G., & Ricardo, B. (2010). La neuroinfamacín como factor detonante del desarrollo de la enfermedad de Alzheimer. Revista Chilena de Neuro-Psiquiatria, 48(1), 49–57. https://doi.org/10.4067/s0717-92272010000200007

Jack, C. R., & Holtzman, D. M. (2013). Biomarker modeling of alzheimer’s disease. Neuron, 80(6), 1347–1358. https://doi.org/10.1016/j.neuron.2013.12.003

Jeanneteau, F., & Chao, M. V. (2013). Are BDNF and glucocorticoid activities calibrated? Neuroscience, 239, 173–195. https://doi.org/10.1016/j.neuroscience.2012.09.017

Kawahara, M. (2012). Neurotoxicity of β-Amyloid-Amyloid Protein: Oligomerization, Channel Formation and Calcium Dyshomeostasis. Current Pharmaceutical Design, 16(25), 2779–2789. https://doi.org/10.2174/138161210793176545

Kilb, W., & Fukuda, A. (2017). Taurine as an Essential Neuromodulator during Perinatal Cortical Development. Frontiers in Cellular Neuroscience, 11(October), 1–13. https://doi.org/10.3389/fncel.2017.00328

Lee, Y., Ham, S., Lee, Y. Il, Jo, M., Kim, H., Kang, H., Jo, A., Lee, G. H., Mo, Y. J., Park, S. C., Lee, Y. S., & Shin, J. H. (2017). Hydrocortisone-induced parkin prevents dopaminergic cell death via CREB pathway in Parkinson’s disease model. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-00614-w

Liu, C. C., Kanekiyo, T., Xu, H., & Bu, G. (2013). Apolipoprotein e and Alzheimer disease: Risk, mechanisms and therapy. Nature Reviews Neurology, 9(2), 106–118. https://doi.org/10.1038/nrneurol.2012.263

Marcinkiewicz, J., & Kontny, E. (2014). Taurine and inflammatory diseases. Amino Acids, 46(1), 7–20. https://doi.org/10.1007/s00726-012-1361-4

McEwen, B. S. (2013). Erratum: Brain on stress: How the social environment gets under the skin (Proceedings of the National Academy of Sciences of the United States of America (2012) 109 (17180-17185) DOI: 10.1073/pnas.1121254109). Proceedings of the National Academy of Sciences of the United States of America, 110(4), 1561. https://doi.org/10.1073/pnas.1221399110

Nelson, P. T., Alafuzoff, I., Bigio, E. H., Bouras, C., Braak, H., Cairns, N. J., Castellani, R. J., Crain, B. J., Davies, P., Tredici, K. Del, Duyckaerts, C., Frosch, M. P., Haroutunian, V., Hof, P. R., Hulette, C. M., Hyman, B. T., Iwatsubo, T., Jellinger, K. A., Jicha, G. A., … Beach, T. G. (2012). Correlation of alzheimer disease neuropathologic changes with cognitive status: A review of the literature. Journal of Neuropathology and Experimental Neurology, 71(5), 362–381. https://doi.org/10.1097/NEN.0b013e31825018f7

Oliveira Fonseca, M., Da Silva, N. S., & Soares, C. P. (2019). Effect of cortisol on K562 leukemia cells. Mundo da Saude, 43(4), 854–869. https://doi.org/10.15343/0104-7809.20194304854869

Panda, S., Mishra, S. R., & Mishra, V. V. V. (2018). A Review On " Taurine-a Magic Molecule ". European Journal of Pharmaceutical and Medical Research, 5(02), 534–536.

Reitz, C., & Mayeux, R. (2014). Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochemical Pharmacology, 88(4), 640–651. https://doi.org/10.1016/j.bcp.2013.12.024

Ripps, H., & Shen, W. (2012). Review: Taurine: A “very essential” amino acid. Molecular Vision, 18(November), 2673–2686.

Rossato, R. C. (2019). Hydrocortisone cytorestores oxidative stress‐induced neuroblastoma. Alzheimer’s & Dementia, 15, P642–P642.

Ruiz, H. H., Chi, T., Shin, A. C., Lindtner, C., Hsieh, W., Ehrlich, M., Gandy, S., & Buettner, C. (2016). Increased susceptibility to metabolic dysregulation in a mouse model of Alzheimer’s disease is associated with impaired hypothalamic insulin signaling and elevated BCAA levels. Alzheimer’s and Dementia, 12(8), 851–861. https://doi.org/10.1016/j.jalz.2016.01.008

Salameh, T. S., Bullock, K. M., Hujoel, I. A., Niehoff, M. L., Wolden-Hanson, T., Kim, J., Morley, J. E., Farr, S. A., & Banks, W. A. (2015). Central Nervous System Delivery of Intranasal Insulin: Mechanisms of Uptake and Effects on Cognition. Journal of Alzheimer’s Disease, 47(3), 715–728. https://doi.org/10.3233/JAD-150307

Salles, G. N., Calió, M. L., Afewerki, S., Pacheco-Soares, C., Porcionatto, M., Hölscher, C., & Lobo, A. O. (2018). Prolonged Drug-Releasing Fibers Attenuate Alzheimer’s Disease-like Pathogenesis. ACS Applied Materials and Interfaces, 10(43), 36693–36702. https://doi.org/10.1021/acsami.8b12649

Salles, G. N., Pereira, F. A. dos S., Pacheco-Soares, C., Marciano, F. R., Hölscher, C., Webster, T. J., & Lobo, A. O. (2017). A Novel Bioresorbable Device as a Controlled Release System for Protecting Cells from Oxidative Stress from Alzheimer’s Disease. Molecular Neurobiology, 54(9), 6827–6838. https://doi.org/10.1007/s12035-016-0200-0

Sartori, T. (2015). Sartori, T. Efeitos da glutamina e taurina sobre a via de sinalização do NF κ B em células Raw 264 . 7 estimuladas com LPS Talita Sartori. 2015.

Shimada, K., et al. (2015). Observation: Application and advantages of BMK in osteoporosis by monitoring the dose of antiresorptive drugs with CTx. Journal of the Medical Association of Thailand, 94(10 SUPPL.), 581–596. https://doi.org/10.1007/978-3-319-15126-7

Toledo, J. B., Toledo, E., Weiner, M. W., Jack, C. R., Jagust, W., Lee, V. M. Y., Shaw, L. M., & Trojanowski, J. Q. (2012). Cardiovascular risk factors, cortisol, and amyloid-β deposition in Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s and Dementia, 8(6), 483–489. https://doi.org/10.1016/j.jalz.2011.08.008

Tyagi, E., Zhuang, Y., Agrawal, R., Ying, Z., & Gomez-Pinilla, F. (2015). Interactive actions of Bdnf methylation and cell metabolism for building neural resilience under the influence of diet. Neurobiology of Disease, 73, 307–318. https://doi.org/10.1016/j.nbd.2014.09.014

Vitaliano, P. P., Murphy, M., Young, H. M., Echeverria, D., & Borson, S. (2011). Does caring for a spouse with dementia promote cognitive decline? A hypothesis and proposed mechanisms. Journal of the American Geriatrics Society, 59(5), 900–908. https://doi.org/10.1111/j.1532-5415.2011.03368.x

Wang, L. Y., Raskind, M. A., Wilkinson, C. W., Shofer, J. B., Sikkema, C., Szot, P., Quinn, J. F., Galasko, D. R., & Peskind, E. R. (2018). Associations between CSF cortisol and CSF norepinephrine in cognitively normal controls and patients with amnestic MCI and AD dementia. International Journal of Geriatric Psychiatry, 33(5), 763–768. https://doi.org/10.1002/gps.4856

Wei, W., & Ji, S. (2018). Cellular senescence: Molecular mechanisms and pathogenicity. Journal of Cellular Physiology, 233(12), 9121–9135. https://doi.org/10.1002/jcp.26956

Zhou, Y., Holmseth, S., Guo, C., Hassel, B., Höfner, G., Huitfeldt, H. S., Wanner, K. T., & Danbolt, N. C. (2012). Deletion of the γ-aminobutyric acid transporter 2 (GAT2 and SLC6A13) gene in mice leads to changes in liver and brain taurine contents. Journal of Biological Chemistry, 287(42), 35733–35746. https://doi.org/10.1074/jbc.M112.368175

Zvěřová, M., Fišar, Z., Jirák, R., Kitzlerová, E., Hroudová, J., & Raboch, J. (2013). Plasma cortisol in Alzheimer’s disease with or without depressive symptoms. Medical Science Monitor, 19(1), 681–689. https://doi.org/10.12659/MSM.889110

Downloads

Published

03/08/2021

How to Cite

ROSSATO, R. C. .; GRANATO, A. E. C. .; MORAES, C. D. G. de O. .; SALLES, G. N. .; SOARES, C. P. . Neuroprotective effects of taurine on SH-SY5Y cells under hydrocortisone induced stress. Research, Society and Development, [S. l.], v. 10, n. 9, p. e55510918426, 2021. DOI: 10.33448/rsd-v10i9.18426. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/18426. Acesso em: 19 apr. 2024.

Issue

Section

Health Sciences