Evaluation of the antimicrobial and cytotoxic activities of alkaloid-rich fractions obtained from Mitracarpus frigidus aerial parts (Rubiaceae)

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19541

Keywords:

Rubiaceae; Mitracarpus frigidus; Alkaloids; Antimicrobial activity; Cytotoxicity.

Abstract

The present study aimed to extract and evaluate the antimicrobial and cytotoxic potential of alkaloid-rich fractions obtained from Mitracarpus frigidus aerial parts. The isolation of alkaloids was performed by acid-base extraction and column chromatography with Sephadex LH-20 as stationary phase. The antimicrobial activity was evaluated by the broth microdilution method to determine the minimum inhibitory concentration (MIC) and also by antimicrobial quantitative parameters (total activity, percentage of activity and microbial susceptibility index) against nine strains of microorganisms: Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhimurium, Shigella sonnei, Klebsiella pneumoniae, Escherichia coli, Bacillus cereus, Candida albicans and Cryptococcus neoformans. Cytotoxicity was tested against Artemia salina and two leukemic cell lines, HL60 and Jurkart. The fraction richest in alkaloid showed expressive activity for S. aureus, S. typhimurium, B. cereus, P. aeruginosa, S. sonnei and C. neoformans with MIC below 0.100 mg/mL. The samples did not show cytotoxic effect against A. salina and, in relation to the tumor cell lines, only the fractions rich in alkaloids showed moderate activity with about 50 and 35% decrease in cell viability for HL60 and Jurkart, respectively. The presented results open perspectives for the future isolation, purification and identification of bioactive substances from M. frigidus that can be used, mainly in the treatment of microbial infections.

References

Bonjar, G. H. S. (2004). New approaches in screening for antibacterial in plants. Asian Journal of Plant Science, 3, 55-60.

Chen, C.; Hu, J., Zeng, P.; Pan, F., Yaseen, M., Xu, H. & Lu, J. R. (2014). Molecular mechanisms of anticancer action and cell selectivity of short a-helical peptides. Biomaterials, 35, 1552-1561.

CLSI, Clinical and Laboratory Standards Institute (2010). Performance standards for antimicrobial susceptibility testing. Twenty first informational supplement. CLSI Document M100-S21.

CLSI, Clinical and Laboratory Standards Institute (2017). Performance standards for antimicrobial susceptibility testing. (4th ed.), CLSI Document M27.

Cordell, G. A., Quinn-Beattie, M. L. & Farnsworth, N. R. (2001). The potential of alkaloids in drug discovery. Phytotherapy Research, 15, 183-205.

Eloff, J. N. (2004). Quantifying the bioactivity of plant extracts during screening and bioassay-guided fractionation. Phytomedicine, 11, 370-371.

Fabri, R. L., Nogueira, M. S., Braga, F. G., Coimbra, E. S. & SCIO, E. (2009). Mitracarpus frigidus aerial parts exhibited potent antimicrobial, antileishmaninal, and antioxidant effects. Bioresource Technology, 100, 428-433.

Gbaguidi, F., Accrombessi, G., Moudachirou, M. & Quetin-Leclercq, J. (2005). HPLC quantification of two isomeric triterpenic acids isolated from Mitracarpus scaber and antimicrobial activity on Dermatophilus congolensis. Journal of Pharmaceutical and Biomedical Analysis, 39, 990-995.

Global Burden of Disease Cancer Collaboration (2017). Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study. JAMA Oncology, 3(4), 524-548.

Guven, K., Mutlu, M. B. & Avci, O. (2005). Incidence and characterization of Bacillus cereus in meat and meat products consumed in Turkey. Journal of Food Safety, 26, 30-40.

Martins, D. & Nunez, C. V. (2015). Secondary metabolites from Rubiaceae species. Molecules, 20, 13422-13495.

Matos, F. J. A. (1997). Introdução à fitoquímica experimental. (2. ed.). Fortaleza: Edições UFC. 141p.

Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P. & Vaigro-Wolff, A. (1991). Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. Journal of National Cancer Institute, 83 (11), 757-766.

Mossman, T. (1983). Rapid colorimetric assay for cellular growth and survival: apllication for proliferation in citotoxicity. Journal of Immunological Methods, 65, 55-63.

Nok, A. J. (2002). Azaanthraquinone inhibits respiration and in vitro growth of long slender bloodstream forms of Trypanosoma congolense. Cell Biochemistry and Function, 20, 205-212.

Okunade, A. L., Clark, A. M., Hufford, C. D. & Oguntimein, B. O. (1999). Azaanthraquinone; An antimicrobial alkaloid from Mitracarpus scaber. Planta Medica, 65, 447-448.

Pereira, Z. V., Carvalho-Okano, R. M. & Garcia, F. C. P. (2006) Rubiaceae Juss. da Reserva Florestal Mata de Paraíso, Viçosa, MG, Brasil. Acta Botanica Brasilica, 20, 207–224.

Rajabi, S., Ramazani, A., Hamidi, M. & Naji, T. (2015) Artemia salina as a model organism in toxicity assessment of nanoparticles. Journal of Pharmaceutical Sciences, 23(20), 1-6.

Rosales, P. F., Bordin, G. S., Gower, A. E.& Moura, S. (2020) Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia, 143, 104558.

Simões, C. M. O., Schenkel, E. P., Gosmann, G., Mello, J. C. P., Mentz, L. A. & Petrovick, P. (2011). Farmacognosia: da planta ao medicamento. 6 ed. Editora da UFSC, 765-791.

Soberon, J. R., Sgariglia, M. A. & Sampietro, D. A. (2007). Antibacterial activity of plants extracts from northwestern Argentina. Journal of Applied Microbiology, 102(6), 1450-1461.

Stott, K. E., Loyse, A., Jarvis, J. N., Alufandika, M., Harrison, T. S., Mwandumba, H. C., Day, J. N., Lalloo, D. G., Bicanic, T., Perfect, J. R. & Hope, W. (2021). Cryptococcal meningoencephalitis: time for action. The Lancet. Infectious Diseases, S1473-3099(20), 30771-30774.

Published

25/08/2021

How to Cite

SOUZA, T. de F. .; CAMPOS, L. M. .; LEMOS, A. S. de O. .; DINIZ, I. O. M. .; PAULA, P. de L. .; ARAUJO, M. G. de F. .; CHEDIER, L. M. .; FABRI, R. L. . Evaluation of the antimicrobial and cytotoxic activities of alkaloid-rich fractions obtained from Mitracarpus frigidus aerial parts (Rubiaceae). Research, Society and Development, [S. l.], v. 10, n. 11, p. e148101119541, 2021. DOI: 10.33448/rsd-v10i11.19541. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/19541. Acesso em: 20 apr. 2024.

Issue

Section

Agrarian and Biological Sciences