Alpha-terpineol: evaluation and pharmacological screening as an antidepressant agent

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19571

Keywords:

Terpenes; Antidepressive agents; Norepinephrine.

Abstract

Objective: To evaluate the possible antidepressant effects of alpha-terpineol in rodents. Material and Methods: Depression levels were analyzed by comparing the total immobility time presented by the animals of the experimental groups in the test session, using the Forced Swimming Test and the Tail Suspension Test. The parameters of locomotion (central, peripheral and total) and motor coordination were evaluated in the Open Field Test and in the Rota Rod Test, respectively. In the second stage, the involvement of the noradrenergic system in the antidepressant action of alpha-terpineol in Forced Swimming Test was investigated. Results and Discussion: After performing the experimental tests, it was observed that the animals that received alpha-terpineol had reduced immobility time in Forced Swimming Test and Tail Suspension Test, compared to the other groups. In the Open Field Test and Rota-rod, the mice showed, respectively, good exploratory activity and motor coordination during the tests. In addition, the study of the Noradrenergic System proved to be a promising mechanism used during its antidepressant action. Conclusion: In view of the results of the experimental tests, alpha-terpineol presented similar responses to those found in other monoterpenes investigated in the literature. Thus, it is shown as a promising antidepressant to be used clinically in humans, with less side effects and low production cost.

References

Abbasi-Maleki, S., Kadkhoda, Z., & Taghizad-Farid, R. (2020). The antidepressant-like effects of Origanum majorana essential oil on mice through monoaminergic modulation using the forced swimming test. Journal of Traditional and Complementary Medicine, 10(4), 327-335. DOI: https://doi.org/10.1016/j.jtcme.2019.01.003

Abouhosseini Tabari, M., Hajizadeh Moghaddam, A., Maggi, F., & Benelli, G. (2018). Anxiolytic and antidepressant activities of Pelargonium roseum essential oil on Swiss albino mice: Possible involvement of serotonergic transmission. Phytotherapy research, 32(6), 1014-1022. DOI: https://doi.org/10.1002/ptr.6038

Archer, J. (1973). Tests for emotionality in rats and mice: a review. Animal behaviour, 21(2), 205-235. DOI: https://doi.org/10.1016/S0003-3472(73)80065-X

Badr, A. M., Attia, H. A., & Al-Rasheed, N. (2020). Oleuropein reverses repeated corticosterone-induced depressive-like behavior in mice: evidence of modulating effect on biogenic amines. Scientific reports, 10(1), 1-10. DOI: https://doi.org/10.1038/s41598-020-60026-1

Diniz, T. C., Oliveira Júnior, R. G. de, Medeiros, M. A. M. B., e Silva, M. G., de Andrade Teles, R. B., dos Passos Menezes, P., ... & da Silva Almeida, J. R. G. (2019). Anticonvulsant, sedative, anxiolytic and antidepressant activities of the essential oil of Annona vepretorum in mice: Involvement of GABAergic and serotonergic systems. Biomedicine & Pharmacotherapy, 111, 1074-1087. DOI: https://doi.org/10.1016/j.biopha.2018.12.114

Dougnon, G., & Ito, M. (2020). Inhalation administration of the bicyclic ethers 1, 8-and 1, 4-cineole prevent anxiety and depressive-like behaviours in mice. Molecules, 25(8), 1884. DOI: https://doi.org/10.3390/molecules25081884

Fajemiroye, J. O., Adam, K., Zjawiony Jordan, K., Alves, C. E., & Aderoju, A. A. (2018). Evaluation of anxiolytic and antidepressant-like activity of aqueous leaf extract of Nymphaea lotus Linn. in mice. Iranian journal of pharmaceutical research: IJPR, 17(2), 613. PMID: 29881419

George, M., Joseph, L., & Sharma, A. (2012). Antidepressant and skeletal muscle relaxant effects of the aqueous extract of the Prosopis cineraria. Brazilian journal of pharmaceutical sciences, 48(3), 577-581. DOI: https://doi.org/10.1590/S1984-82502012000300025

Godoy, A. A., Kummrow, F., & Pamplin, P. A. Z. (2015). Ecotoxicological evaluation of propranolol hydrochloride and losartan potassium to Lemna minor L.(1753) individually and in binary mixtures. Ecotoxicology, 24(5), 1112-1123. DOI: https://doi.org/10.1007/s10646-015-1455-3

Gonçalves, J. C. R., Sousa Oliveira, F. de, Benedito, R. B., Sousa, D. P. de, Almeida, R. N. de, & Araújo, D. A. M. de (2008). Antinociceptive activity of (−)-carvone: evidence of association with decreased peripheral nerve excitability. Biological and Pharmaceutical Bulletin, 31(5), 1017-1020. DOI: http://dx.doi.org/10.1590/S1984-82502012000300025

Guzmán-Gutiérrez, S. L., Gómez-Cansino, R., García-Zebadúa, J. C., Jiménez-Pérez, N. C., & Reyes-Chilpa, R. (2012). Antidepressant activity of Litsea glaucescens essential oil: identification of β-pinene and linalool as active principles. Journal of Ethnopharmacology, 143(2), 673-679. DOI: https://doi.org/10.1016/j.jep.2012.07.026

Ishola, I. O., Awodele, O., & Eluogu, C. O. (2016). Potentials of Mangifera indica in the treatment of depressive-anxiety disorders: possible mechanisms of action. Journal of Complementary and Integrative Medicine, 13(3), 275-287. DOI: https://doi.org/10.1515/jcim-2015-0047

Khaleel, C., Tabanca, N., & Buchbauer, G. (2018). α-Terpineol, a natural monoterpene: A review of its biological properties. Open Chemistry, 16(1), 349-361. DOI: https://doi.org/10.1515/chem-2018-0040

Lima, F. F. de, Souza Júnior, P. S. V., Traesel, G. K., Menegati, S. E. L. T., Oesterreich, S. A., & Vieira, M. C. (2019). Estudo do efeito central do óleo da polpa de Attalea phalerata Mart. ex spreng. em modelos animais de ansiedade e depressão. Revista Eletrônica de Farmácia, 16(E), 2. DOI: https://doi.org/10.5216/ref.v16.49497

López-Rodríguez, R., Herrera-Ruiz, M., Trejo-Tapia, G., Domínguez-Mendoza, B. E., González-Cortazar, M., & Zamilpa, A. (2019). In vivo gastroprotective and antidepressant effects of iridoids, verbascoside and tenuifloroside from Castilleja tenuiflora Benth. Molecules, 24(7), 1292. DOI: https://doi.org/10.3390/molecules24071292

Machado, D. G., Cunha, M. P., Neis, V. B., Balen, G. O., Colla, A., Bettio, L. E., ... & Rodrigues, A. L. S. (2013). Antidepressant-like effects of fractions, essential oil, carnosol and betulinic acid isolated from Rosmarinus officinalis L. Food Chemistry, 136(2), 999-1005. DOI: https://doi.org/10.1016/j.foodchem.2012.09.028

Mendonça-Netto, S., Varela, R. W., Fechine, M. F., Queiroga, M. N., Souto-Maior, F. N., & Almeida, R. N. (2008). Antidepressant effects of total tertiary alkaloid fraction of Cissampelos sympodialis Eichler in rodents. Revista Brasileira de Farmacognosia, 18(2), 165-169. DOI: https://doi.org/10.1590/S0102-695X2008000200004

Montenegro, F. C., Sena, M. C. D. P., Barbosa Filho, J. M., & Almeida, R. N. D. (2010). Evidência de uma ação central exercida pela fração total de alcalóides de Chondrodendron platyphyllum em camundongos. Rev. bras. ciênc. saúde, 14(2), 7-12. DOI: 10.4034/RBCS.2010.14.02.0

Możdżeń, E., Wąsik, A., Romańska, I., Michaluk, J., & Antkiewicz-Michaluk, L. (2017). Antidepressant-like effect of 1, 2, 3, 4-tetrahydroisoquinoline and its methyl derivative in animal models of depression. Pharmacological Reports, 69(3), 566-574. DOI: https://doi.org/10.1016/j.pharep.2017.01.032

Nogueira Neto, J. D., Almeida, A. A. C., Silva, O. A., Carvalho, R. B. F., Sousa, D. P., & Freitas, R. M. (2012). Avaliação da toxicidade aguda e das propriedades ansiolíticas do nerolidol em camundongos. Bio Far, 8(2), 42-56.

Pan American Health Organization [PAHO] (2018). World Health Organization (WHO). Folha Informativa – Depressão. Brasília. Recuperado em 02 de abril, 2021, de https://www.paho.org/pt/topicos/depressao.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_MetodologiaPesquisaCientifica.pdf?sequence=1.

Pimenta, A. B., Seixas, S. R. S., Gregório, L. E., & Santos, C. F. F. (2016). Actividad antidepressiva del extracto etanolico de la Kielmeyera rubriflora Cambes (Pau Santo) en ratones. Revista Cubana de Plantas Medicinales, 21(2), 181-195. ISSN 1028-4796

Pitzer, C., La Porta, C., Treede, R. D., & Tappe‐Theodor, A. (2019). Inflammatory and neuropathic pain conditions do not primarily evoke anxiety‐like behaviours in C57 BL/6 mice. European Journal of Pain, 23(2), 285-306. DOI: https://doi.org/10.1002/ejp.1303

Podkowa, K., Pochwat, B., Brański, P., Pilc, A., & Pałucha-Poniewiera, A. (2016). Group II mGlu receptor antagonist LY341495 enhances the antidepressant-like effects of ketamine in the forced swim test in rats. Psychopharmacology, 233(15), 2901-2914. DOI: https://doi.org/10.1007/s00213-016-4325-7

Porsolt, R. D., Le Pichon, M., & Jalfre, M. L. (1977). Depression: a new animal model sensitive to antidepressant treatments. Nature, 266(5604), 730-732. DOI: https://doi.org/10.1038/266730a0

Posser, T., Kaster, M. P., Baraúna, S. C., Rocha, J. B., Rodrigues, A. L. S., & Leal, R. B. (2009). Antidepressant-like effect of the organoselenium compound ebselen in mice: evidence for the involvement of the monoaminergic system. European journal of pharmacology, 602(1), 85-91. DOI: https://doi.org/10.1016/j.ejphar.2008.10.055

Rehsia, N. S., & Dhalla, N. S. (2010). Mechanisms of the beneficial effects of beta-adrenoceptor antagonists in congestive heart failure. Experimental & Clinical Cardiology, 15(4), e86. PMID: 21264074

Savegnago, L., Jesse, C. R., Moro, A. V., Borges, V. C., Santos, F. W., Rocha, J. B., & Nogueira, C. W. (2006). Bis selenide alkene derivatives: a class of potential antioxidant and antinociceptive agents. Pharmacology Biochemistry and Behavior, 83(2), 221-229. DOI: https://doi.org/10.1016/j.pbb.2006.02.002

Schneider, E. M., Fujii, R. A. X., & Corazza, M. J. (2017). Pesquisas quali-quantitativas: contribuições para a pesquisa em ensino de ciências. Revista Pesquisa Qualitativa, 5(9), 569-584. ISSN 2525-8222

Steru, L., Chermat, R., Thierry, B., & Simon, P. (1985). The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology, 85(3), 367-370. DOI: https://doi.org/10.1007/BF00428203

Tian, D. D., Wang, M., Liu, A., Gao, M. R., Qiu, C., Yu, W., & Wu, Y. M. (2021). Antidepressant Effect of Paeoniflorin Is Through Inhibiting Pyroptosis CASP-11/GSDMD Pathway. Molecular Neurobiology, 58(2), 761-776. DOI: https://doi.org/10.1007/s12035-020-02144-5

Tundo, A., de Filippis, R., & Proietti, L. (2015). Pharmacologic approaches to treatment resistant depression: evidences and personal experience. World journal of psychiatry, 5(3), 330. DOI: 10.5498/wjp.v5.i3.330

Yin, R. K. O Estudo de caso. Porto Alegre: Bookman, 2015.

Downloads

Published

28/08/2021

How to Cite

ASSUNÇÃO , A. F. C. .; RODRIGUES, N. D. S. .; SAMPAIO, A. V. da C. .; SILVA, K. dos S. .; SILVA, L. R. da .; MARTINS, M. G. dos S. .; ALMEIDA, F. R. de C.; LOPES, L. da S.; MONTE, S. M.; MARQUES, R. B. .; MAIA-FILHO, A. L. M. Alpha-terpineol: evaluation and pharmacological screening as an antidepressant agent. Research, Society and Development, [S. l.], v. 10, n. 11, p. e191101119571, 2021. DOI: 10.33448/rsd-v10i11.19571. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/19571. Acesso em: 25 apr. 2024.

Issue

Section

Health Sciences