Polysulfone membranes with titanium dioxide obtained through the Phase Inversion Technique for the treatment of textile effluents

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19605

Keywords:

Polymeric membranes; Phase inversion; Polysulfone; Textile wastewater treatment.

Abstract

Polysulfone is a promising material for membrane production. However, aiming to promote greater resistance to scale formation and improvements in permeability, selectivity and resistance (mechanical and chemical) to these types of membranes, the addition of inorganic nanoparticles such as titanium dioxide has been proposed to obtain desired properties and favor applications. The development of polysulfone nanocomposite membranes will make it possible to find a relationship between low cost and high level of performance, due to the use of a smaller amount of inorganic filler introduced in the polymeric material, which may result in synergy between the individual properties of these components, enhancing the performance of this hybrid material obtained. Therefore, this fact demonstrates the importance of obtaining these membranes to improve their properties and, consequently, obtain greater efficiency in PSM for application in microfiltration systems, representing an important contribution to academia and society, in addition to serving as support for work futures. Nevertheless, this work aims to carry out a literature review on microporous membranes made from polysulfone with the introduction of inorganic charges through the phase inversion technique, aiming at its application in the treatment of effluents from the textile industry.

References

Anadão, P. (2010). Ciência e Tecnologia de Membranas. Artliber Editora Ltda. ISBN: 8588098504

Armoa, M. H., & Junior, M. J. (2011). Princípios e aplicações de processos de separação por membranas inorgânicas. Ciência & Tecnologia, 2 (1).

Amini, M., Seifi, M., Akbari, A., & Hosseinifard, M. (2020). Polyamide-zinc oxide-based thin film nanocomposite membranes: Towards improved performance for forward osmosis. Polyhedron, 179, 114362. https://doi.org/10.1016/j.poly.2020.114362

Baker, R. W. (2004). Membrane Technology and Applications. 2. ed. New Jersey: John Wiley & Sons Inc., 545 p.

Da Silva, V. D., dos Santos, L. M., Subda, S. M., Ligabue, R., Seferin, M., Carone, C. L., & Einloft, S. (2013). Synthesis and characterization of polyurethane/titanium dioxide nanocomposites obtained by in situ polymerization. Polymer bulletin, 70(6), 1819-1833. https://doi.org/:10.1007/s00289-013-0927-y

De Medeiros, K. M., Araujo, E. M., Lira, H. D. L., Lima, D. D. F., de Lima, C. A. P., & de Lima, G. G. C. (2018). Analysis of pore size of hybrid membranes for separation of microemulsions. Desalination and Water Treatment, 110, 65-75. https://doi.org/doi: 10.5004/dwt.2018.22217

De Medeiros, K. M., da N. Medeiros, V., de F. Lima, D., de Lima, C. A., Araújo, E. M., & de L. Lira, H. (2019). Hybrid microporous membranes applied in wastewater treatment. In Macromolecular Symposia, 383(1), 1800037. https://doi.org/10.1002/masy.201800037

Dos Santos Filho, E. A., Florindo Salviano, A., Araújo, B. A., de Medeiros, K. M., Medeiros, V. D. N., Araújo, E. M., & Lira, H. L. (2017). Influence of additives on hybrids membranes morphology for water treatment. In Diffusion Foundations (Vol. 14, pp. 86-106). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/DF.14.86

Dos Santos Filho, E. A., de Medeiros, K. M., Araújo, E. M., Ferreira, R. D. S. B., Oliveira, S. S. L., & da Nóbrega Medeiros, V. (2019). Membranes of polyamide 6/clay/salt for water/oil separation. Materials Research Express, 6(10), 105313. https://doi.org/10.1088/2053-1591/ab3754

Esfahani, M. R., tyler, j. L., stretz, h. A., e wells, m. J. (2015). Effects of a dual nanofiller, nano-TiO2 and MWCNT, for polysulfone-based nanocomposite membranes for water purification. Desalination, 372,47-56. https://doi.org/10.1016/j.desal.2015.06.014

Fernandes, P. M., Medeiros, K. M. D., Araújo, E. M., Araujo, B. A., & Santos, E. A. D. (2018). Membranas de polisulfona/argila: influência de diferentes argilas na propriedade de barreira. Matéria (Rio de Janeiro), 23. https://doi.org/10.1590/s1517-707620170001.0317

Ferreira, R. D. S. B., Oliveira, S. S. L., Salviano, A. F., Araújo, E. M., Leite, A. M. D., & Lira, H. D. L. (2019). Polyethersulfone hollow fiber membranes developed for oily emulsion treatment. Materials Research, 22. https://doi.org/10.1590/1980-5373-MR-2018-0854

Figoli, A.; Simone, S.; Drioli, E. (2015). Polymeric membranes. In: HILAL, N.; ISMAIL, A. F.; WRIGHT, C. J. (Orgs.). Membrane fabrication. Boca Raton: CRC Press. 3-44.

Figoli, A.; Hoinkis, J.; Altinkaya, S. A.; Bundschuh. (2017). J. (Eds.). Application of nanotechnology in membranes for water treatment. CRC Press.

Gohil, j. m.; Choudhury, R. R. (2019). Introduction to Nanostructured and Nano-enhanced Polymeric Membranes: Preparation, Function, and Application for Water Purification. Nanoscale Materials in Water Purification. 25-57. https://doi.org/10.1016/B978-0-12-813926-4.00038-0

Habert, A. C.; Borges C. P. & Nobrega, R. (2006) Processos de Separação por Membranas. Rio de Janeiro: E-papers. ISBN: 85-7650-085-X

Hamid, N. A. A., Ismail, A. F., Matsuura, T., Zularisam, A. W., Lau, W. J., Yuliwati, E., & Abdullah, M. S. (2011). Morphological and separation performance study of polysulfone/titanium dioxide (PSF/TiO2) ultrafiltration membranes for humic acid removal. Desalination, 273(1), 85-92. https://doi.org/10.1016/j.desal.2010.12.052

Jaleh, B.; Zare, E.; Azizian, S.; Qanati, O.; Nasrollahzadeh, M.; Varma, R. S. (2020). Preparation and Characterization of Polyvinylpyrrolidone/Polysulfone Ultrafiltration Membrane Modified by Graphene Oxide and Titanium Dioxide for Enhancing Hydrophilicity and Antifouling Properties.Journal of Inorganic and Organometallic Polymers and Materials,30(6),2213-2223. https://doi.org/10.1007/s10904-019-01367-x

Jose, A. J.; Kappen, J.; Alagar, M. (2018) Polymeric membranes: Classification, preparation, structure physiochemical, and transport mechanisms. In: Fundamental Biomaterials: Polymers Woodhead Publishing, 21-35. https://doi.org/10.1016/B978-0-08-102194-1.00002-5

Jyothi, M. S., Nayak, V., Padaki, M., Balakrishna, R. G., & Soontarapa, K. (2016). Aminated polysulfone/TiO2 composite membranes for an effective removal of Cr (VI). Chemical Engineering Journal, 283, 1494-1505. https://doi.org/10.1016/j.cej.2015.08.116

Kasvi. (2017). Sistemas Filtração: Princípios e aplicações. https://kasvi.com.br/sistemas-filtracao/

Kunz, A., & Mukhtar, S. (2016). Hydrophobic membrane technology for ammonia extraction from wastewaters. Engenharia Agrícola, 36, 377-386. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n2p377-386/2016

Khulbe, K. C.; Feng, C. Y.; Matsuura, T. (2008). Synthetic polymeric membranes: characterization by atomic force microscopy. Springer Science & Business Media. ISBN: 978-3-540-73994-4

Kusworo, T. D., Ariyanti, N., & Utomo, D. P. (2020). Effect of nano-TiO2 loading in polysulfone membranes on the removal of pollutant following natural-rubber wastewater treatment. Journal of Water Process Engineering, 35, 101190. https://doi.org/10.1016/j.jwpe.2020.101190

Mamah, S. C., Goh, P. S., Ismail, A. F., Suzaimi, N. D., Yogarathinam, L. T., Raji, Y. O., & EL-badawi, T. H. (2020). Recent development in modification of polysulfone membrane for water treatment application. Journal of Water Process Engineering, 101835. https://doi.org/10.1016/j.jwpe.2020.101835

Marcone, G. P., Oliveira, Á. C., Almeida, G., Umbuzeiro, G. A., & Jardim, W. F. (2012). Ecotoxicity of TiO2 to Daphnia similis under irradiation. Journal of hazardous materials, 211, 436-442. https://doi.org/10.1016/j.jhazmat.2011.12.075

Mobarakabad, P., Moghadassi, A. R., & Hosseini, S. M. (2015). Fabrication and characterization of poly (phenylene ether-ether sulfone) based nanofiltration membranes modified by titanium dioxide nanoparticles for water desalination. Desalination, 365, 227-233. https://doi.org/10.1016/j.desal.2015.03.002

Mousa, H. M., Alfadhel, H., Ateia, M., & Abdel-Jaber, G. T. (2020). Polysulfone-iron acetate/polyamide nanocomposite membrane for oil-water separation. Environmental Nanotechnology, Monitoring & Management, 14. https://doi.org/doi:100314. 0.1016/j.enmm.2020.100314

Mukherjee, R., & De, S. (2016). Preparation of polysulfone titanium di oxide mixed matrix hollow fiber membrane and elimination of long term fouling by in situ photoexcitation during filtration of phenolic compounds. Chemical Engineering Journal, 302, 773-785.https://doi.org/10.1016/j.cej.2016.05.060

Mulder, M. (1996). Basic Principles of Membrane Technology. 2. ed. Dordrecht: Kluwer Academic Publishers, 564 p.

Nguyen, V. H. T., Nguyen, M. N., Truong, T. T., Nguyen, T. T., Doan, H. V., & Pham, X. N. (2020). One-pot preparation of alumina-modified polysulfone-graphene oxide nanocomposite membrane for separation of emulsion-oil from wastewater. Journal of Nanomaterials, 2020. https://doi.org/10.1155/2020/9087595

Pan, Z., Song, C., Li, L., Wang, H., Pan, Y., Wang, C., Li, J., Wang, T., & Feng, X. (2019). Membrane technology coupled with electrochemical advanced oxidation processes for organic wastewater treatment: Recent advances and future prospects. Chemical Engineering Journal, 376, 120909. https://doi.org/10.1016/j.cej.2019.01.188

Parani, S., & Oluwafemi, O. S. (2020). Fabrication of superhydrophobic polyethersulfone-ZnO rods composite membrane. Materials Letters, 281, 128663. https://doi.org/10.1016/j.matlet.2020.128663

Ponnamma, D., Cabibihan, J. J., Rajan, M., Pethaiah, S. S., Deshmukh, K., Gogoi, J. P., ... & Cheng, C. (2019). Synthesis, optimization and applications of ZnO/polymer nanocomposites. Materials Science and Engineering: C, 98, 1210-1240. . https://doi.org/10.1016/j.msec.2019.01.081

Pereira, A.S., Shitsuka D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM.

Rajakumaran, R., Boddu, V., Kumar, M., Shalaby, M. S., Abdallah, H., & Chetty, R. (2019). Effect of ZnO morphology on GO-ZnO modified polyamide reverse osmosis membranes for desalination. Desalination, 467, 245-256. https://doi.org/10.1016/j.desal.2019.06.018

Reddy, K. M., Manorama, S. V., & Reddy, A. R. (2003). Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics, 78(1), 239-245. https://doi.org/10.1016/S0254-0584(02)00343-7

Shao, F., Xu, C., Ji, W., Dong, H., Sun, Q., Yu, L., & Dong, L. (2017). Layer-by-layer self-assembly TiO2 and graphene oxide on polyamide reverse osmosis membranes with improved membrane durability. Desalination, 423, 21-29. https://doi.org/10.1016/j.desal.2017.09.007

Sridhar, S., Moulik, S. Tackling Challenging Industrial Separation Problems through Membrane Technology. In: Sridhar, S., Moulik, S. Membrane Processes Pervaporation, Vapor Permeation and Membrane Distillation for Industrial Scale Separations. Hoboken: John Wiley & Sons, 2019. ISBN: 978-1-119-41835-1

Shi, Q., Ni, L., Zhang, Y., Feng, X., Chang, Q., & Meng, J. (2017). Poly (p-phenylene terephthamide) embedded in a polysulfone as the substrate for improving compaction resistance and adhesion of a thin film composite polyamide membrane. Journal of Materials Chemistry A, 5(26), 13610-13624. https://doi.org/10.1039/C7TA02552A

Strathmann, H., Giorno, L., & Drioli, E. (2011). Introduction to membrane science and technology (Vol. 544). Weinheim, Germany: Wiley-VCH. ISBN: 978-3-527-32451-4

Silva, M. B. R., de Azevedo, P. V., & Alves, T. L. B. (2014). Análise da degradação ambiental no alto curso da bacia hidrográfica do Rio Paraíba. Boletim Goiano de Geografia, 34(1), 35-53. https://doi.org/10.5216/bgg.v34i1.29314

Sirinupong, T., Youravong, W., Tirawat, D., Lau, W. J., Lai, G. S., & Ismail, A. F. (2018). Synthesis and characterization of thin film composite membranes made of PSF-TiO2/GO nanocomposite substrate for forward osmosis applications. Arabian Journal of Chemistry, 11(7), 1144-1153. https://doi.org/10.1016/j.arabjc.2017.05.006

Ullah, S., Ferreira-Neto, E. P., Pasa, A. A., Alcântara, C. C., Acuna, J. J., Bilmes, S. A., Ricci, M. L. M.; Landers, R.; Fermino & Rodrigues-Filho, U. P. (2015). Enhanced photocatalytic properties of core@ shell SiO2@ TiO2 nanoparticles. Applied Catalysis B: Environmental, 179, 333-343. https://doi.org/10.1016/j.apcatb.2015.05.036

Wang, Y., Zhu, J., Dong, G., Zhang, Y., Guo, N., & Liu, J. (2015). Sulfonated halloysite nanotubes/polyethersulfone nanocomposite membrane for efficient dye purification. Separation and Purification Technology, 150, 243-251. https://doi.org/ 10.1016/j.seppur.2015.07.005

Wu, H., Liu, Y., Mao, L., Jiang, C., Ang, J., & Lu, X. (2017). Doping polysulfone ultrafiltration membrane with TiO2-PDA nanohybrid for simultaneous self-cleaning and self-protection. Journal of Membrane Science, 532, 20-29. https://doi.org/10.1016/j.desal.2019.114228

Yadav, S., Ibrar, I., Altaee, A., Déon, S., & Zhou, J. (2020). Preparation of novel high permeability and antifouling polysulfone-vanillin membrane. Desalination, 496, 114759. https://doi.org/10.1016/j.desal.2020.114759

Yang, Y., Zhang, H., Wang, P., Zheng, Q., & Li, J. (2007). The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. Journal of Membrane Science, 288(1-2), 231-238. https://doi.org/10.1016/j.memsci.2006.11.019

Zhang, T., Kong, F. X., Li, X. C., Liu, Q., Chen, J. F., & Guo, C. M. (2020). Comparison of the performance of prepared pristine and TiO2 coated UF/NF membranes for two types of oil-in-water emulsion separation. Chemosphere, 244, 125386. https://doi.org/10.1016/j.chemosphere.2019.125386

Zarshenas, K., Jiang, G., Zhang, J., Jauhar, M. A., & Chen, Z. (2020). Atomic scale manipulation of sublayer with functional TiO2 nanofilm toward high-performance reverse osmosis membrane. Desalination, 480, 114342. https://doi.org/10.1016/j.desal.2020.114342

Published

29/08/2021

How to Cite

ARAUJO, B. A.; DIAS, R. A.; MEDEIROS, V. da N. .; MEDEIROS, K. M. de .; ARAÚJO, E. M. . Polysulfone membranes with titanium dioxide obtained through the Phase Inversion Technique for the treatment of textile effluents. Research, Society and Development, [S. l.], v. 10, n. 11, p. e210101119605, 2021. DOI: 10.33448/rsd-v10i11.19605. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/19605. Acesso em: 24 apr. 2024.

Issue

Section

Exact and Earth Sciences