Discrete-time control system applicable to aerobic wastewater treatment process

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19700

Keywords:

Optimal Control; Activated sludge; Wastewater treatment.

Abstract

In this work, the Optimal Control Theory was used to develop a discrete-time controller, applicable to the aeration tanks of the activated sludge processes, a process widely used for the treatment of liquid effluents sanitary or industrial. The dynamic behavior of the state variables used to describe the aeration tank was described using the model proposed by the International Water Association. Biomass concentration, substrate concentration and effluent flow from the aeration tank constituted the state variables. Recirculation flow and sludge disposal flow acted as control variables. The computational simulations conducted indicated that the proposed controller allows to substantially reduce the oscillation times and variations in concentrations of state variables in relation to their equilibrium conditions.

References

Bernard, J. L. & Meiring, P. G. J. (1988). Dissolved oxygen control in the activated sludge process. Water Science Technology, 20, 93-100. https://doi.org/10.2166/wst.1988.0157.

Bilgin, M., Şimşek, İ., & Tulun, Ş. (2014). Treatment of domestic wastewater using a lab-scale activated sludge/vertical flow subsurface constructed wetlands by using Cyperus alternifolius. Ecological engineering, 70, 362-365. https://doi.org/10.1016/j.ecoleng.2014.06.032.

Buaisha, M., Balku, S., & Özalp-Yaman, S. (2020). Heavy metal removal investigation in conventional activated sludge systems. Civil Engineering Journal, 6(3), 470-477.

Bryson, A. E. & Ho, Y. C. (1969). Applied Optimal Control. Massachussets, Ginn & Co.

Clifft, R. C. & Andrews, J. F. (1981). Aeration control for reducing energy consumption in small activated sludge plants. Water Science Technology, 13, 371-379.

Clifft, R. C. & Garrett, M. T. (1988). Improved oxygen dissolution control for oxygen activated sludge. Water Science Technology, 20, 101-108. https://doi.org/10.2166/wst.1988.0158.

Douziech, M., Conesa, I. R., Benítez-López, A., Franco, A., Huijbregts, M., & Van Zelm, R. (2018). Quantifying variability in removal efficiencies of chemicals in activated sludge wastewater treatment plants–a meta-analytical approach. Environmental Science: Processes & Impacts, 20(1), 171-182. https://doi.org/10.1039/C7EM00493A.

Garcia, C. (1997). Modelagem e Simulação. São Paulo, EDUSP.

Grady, C. L. P. Jr. & Lim, H. C. (1988). Biological Wastewater Treatment – Theory and Applications. New York, Marcel Dekker.

Henze, M., Grady Jr, C. L., Gujer, W., Marais, G. V. R., & Matsuo, T. (1987). A general model for single-sludge wastewater treatment systems. Water research, 21(5), 505-515.

Kabouris, J. C., Georgakakos, A. P. & Câmara, A. (1992). Optimal control of the activated sludge Process: effect of sludge storage. Water Research, 26(4), 507-517. https://doi.org/10.1016/0043-1354(92)90052-6.

Kwakernaak, H. & Sivan, R. (1972). Linear Optimal Control Systems. New York, John Wiley & Sons.

Lindberg, C. F. & Carlsson, B. (1996). Nonlinear and set-point control of the dissolved oxygen concentration in an activated sludge process. Water Science Technology, 34, 135-142. https://doi.org/10.1016/0273-1223(96)00565-3.

Lukasse, L. J. S. & Keesman, K. J. (1999). Optimized operation and design of alternating activated sludge processes for N-removal. Water Research, 3(11), 2651-2659. https://doi.org/10.1016/S0043-1354(98)00503-X.

Lotito, A. M., De Sanctis, M., Di Iaconi, C. & Bergna, G. (2014). Textile wastewater treatment: Aerobic granular sludge vs activated sludge systems. Water Research, 54, 337-346. https://doi.org/10.1016/j.watres.2014.01.055.

Nogita, S. & Hiraoka, M. (1981). Calculation of sludge reservoir volume for MLSS control. Water Science Technology, 13, 433-438.

Ogata, K. (2000). Engenharia de controle moderno. Rio de Janeiro, Editora LTC.

Reis, J. A. T. & Mendonça, A. S. F. (2014). Desenvolvimento de sistema de Controle Ótimo para processo de tratamento de efluentes. Engenharia Sanitária e Ambiental, 19, 401-410. https://doi.org/10.1590/S1413-41522014019000000102.

Strejc, V. (1981). State Space Theory of Discrete Linear Control. Prague, John Wiley & Sons.

Tchobanoglous, G. & Burton, F. L. (1991). Wastewater Engineering – Treatment, Disposal and Reuse. New York: McGraw Hill.

Van Haandel, A. & Marais, G. (1999). O comportamento do sistema de lodo ativado. Teoria e aplicações para projetos e operação. Campina Grande, Epigraf.

Von Sperling, M. (2005). Princípios do tratamento biológico de águas residuárias – Introdução à qualidade das águas e ao tratamento de esgotos. Belo Horizonte: Belo Horizonte: DESA – UFMG.

Published

01/09/2021

How to Cite

REIS, J. A. T. dos .; REIS, A. de O. P. dos; MENDONÇA, A. S. F.; SILVA, F. das G. B. da. Discrete-time control system applicable to aerobic wastewater treatment process. Research, Society and Development, [S. l.], v. 10, n. 11, p. e290101119700, 2021. DOI: 10.33448/rsd-v10i11.19700. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/19700. Acesso em: 19 apr. 2024.

Issue

Section

Engineerings