A influência de Ni e Co suportados em diatomita brasileira para produção de H2 via reforma a seco do metano

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19729

Keywords:

Diatomite; Nickel; Cobalt; Hydrogen; Dry reforming.

Abstract

A diatomita brasileira foi usada como suporte catalítico para a reforma a seco do metano. As fases ativas utilizadas foram Ni e Co em diferentes concentrações. Os catalisadores foram calcinados a 500 °C por 5 he caracterizados por DRX, BET, TPR e SEM. Os resultados de DRX dos catalisadores mostraram que houve formação de espinélio de NiCo2O4 para os catalisadores bimetálicos, além das fases esperadas de NiO e Co3O4. Os testes catalíticos foram realizados a 700 °C com velocidade espacial de18 L⋅h-1⋅g-1, demonstrando um efeito sinérgico entre as fases ativas (Ni e Co). O catalisador Ni8Co2/ D apresentou maior rendimento para H2, melhor estabilidade e menor taxa de formação de carbono entre os catalisadores bimetálicos. Os resultados de MEV após a reação indicaram a presença de filamentos de carbono. De acordo com os resultados, a diatomita brasileira pode ser aplicada como suporte catalítico na reação de reforma a seco do metano.

Author Biographies

Gineide Conceição Anjos, Federal University of Rio Grande do Norte

Graduate Program in Materials Science and Engineering.

Ângelo Anderson Silva de Oliveira, Federal University of Rio Grande do Norte

Postgraduate Program in Petroleum Science and Engineering.

Dulce Maria de Araújo Melo, Federal University of Rio Grande do Norte

Postgraduate Program in Materials Science and Engineering and Postgraduate Program of Chemistry.

Rodolfo Luis Bezerra de Araújo Medeiros, Federal University of Rio Grande do Norte

Postgraduate Program in Materials Science and Engineering.

Cássia Carvalho de Almeida, Federal University of Rio Grande do Norte

Postgraduate Program in Materials Science and Engineering.

Elania Maria Fernandes Silva, Federal University of Rio Grande do Norte

Graduate Program in Materials Science and Engineering.

Eledir Vitor Sobrinho, Federal University of Rio Grande do Norte

Institute of Chemistry.

References

Costa, R. F., Mateus, P., & Barbosa, A. (2021). Secagem de placas cerâmicas híbridas argila/rejeito de diatomita : Um estudo experimental. Research, Society and Development, 10(8), e13710817174. https://doi.org/dx.doi.org/10.33448/rsd-v10i8.17174

E. J. Fernandes, R.C.M. Silva, H.Á. Oliveira, B.B. Toledo, M.B.T. Moura, F. B. P. (2014). Geração de hidrogênio pela decomposição catalítica do metano em catalisadores de Co/SiO2 promovidos por Ni e Fe. Engevista, 16(1), 41–49.

Estephane, J., Aouad, S., Hany, S., El Khoury, B., Gennequin, C., El Zakhem, H., El Nakat, J., Aboukaïs, A., & Abi Aad, E. (2015). CO2 reforming of methane over Ni-Co/ZSM5 catalysts. Aging and carbon deposition study. International Journal of Hydrogen Energy, 40(30), 9201–9208. https://doi.org/10.1016/j.ijhydene.2015.05.147

Fakeeha, A. H., Khan, W. U., Al-Fatesh, A. S., Abasaeed, A. E., & Naeem, M. A. (2015). Production of hydrogen and carbon nanofibers from methane over Ni-Co-Al catalysts. International Journal of Hydrogen Energy, 40(4), 1774–1781. https://doi.org/10.1016/j.ijhydene.2014.12.011

Gallego, G. S., Batiot-Dupeyrat, C., Barrault, J., Florez, E., & Mondragón, F. (2008). Dry reforming of methane over LaNi1-yByO3±δ (B = Mg, Co) perovskites used as catalyst precursor. Applied Catalysis A: General, 334(1–2), 251–258. https://doi.org/10.1016/j.apcata.2007.10.010

Gao, X., Tan, Z., Hidajat, K., & Kawi, S. (2017). Highly reactive Ni-Co/SiO2 bimetallic catalyst via complexation with oleylamine/oleic acid organic pair for dry reforming of methane. Catalysis Today, 281, 250–258. https://doi.org/10.1016/j.cattod.2016.07.013

García-Labiano, F., García-Díez, E., De Diego, L. F., Serrano, A., Abad, A., Gayán, P., Adánez, J., & Ruíz, J. A. C. (2015). Syngas/H2 production from bioethanol in a continuous chemical-looping reforming prototype. Fuel Processing Technology, 137, 24–30. https://doi.org/10.1016/j.fuproc.2015.03.022

Garcia, G., Cardenas, E., Cabrera, S., Hedlund, J., & Mouzon, J. (2016). Synthesis of zeolite y from diatomite as silica source. Microporous and Mesoporous Materials, 219, 29–37. https://doi.org/10.1016/j.micromeso.2015.07.015

Guo, S., & Shi, L. (2013). Synthesis of succinic anhydride from maleic anhydride on Ni/diatomite catalysts. Catalysis Today, 212, 137–141. https://doi.org/10.1016/j.cattod.2012.10.004

He, S., Zheng, X., Mo, L., Yu, W., Wang, H., & Luo, Y. (2014). Characterization and catalytic properties of Ni/SiO2 catalysts prepared with nickel citrate as precursor. Materials Research Bulletin, 49(1), 108–113. https://doi.org/10.1016/j.materresbull.2013.08.051

Huang, F., Wang, R., Yang, C., Driss, H., Chu, W., & Zhang, H. (2016). Catalytic performances of Ni/mesoporous SiO2 catalysts for dry reforming of methane to hydrogen. Journal of Energy Chemistry, 25(4), 709–719. https://doi.org/10.1016/j.jechem.2016.03.004

Jabbour, K., El Hassan, N., Davidson, A., Massiani, P., & Casale, S. (2015). Characterizations and performances of Ni/diatomite catalysts for dry reforming of methane. Chemical Engineering Journal, 264, 351–358. https://doi.org/10.1016/j.cej.2014.11.109

Li, B., Huang, H., Guo, Y., & Zhang, Y. (2015). Diatomite-immobilized BiOI hybrid photocatalyst: Facile deposition synthesis and enhanced photocatalytic activity. Applied Surface Science, 353, 1179–1185. https://doi.org/10.1016/j.apsusc.2015.07.049

Li, D., Chen, Y., Wang, H., Qiu, X., Alshameri, A., Ma, Y., Liu, Y., & Yan, C. (2014). An investigation into formation mechanism of amorphous hierarchical porous carbons by diatomite as template: Effect of furfuryl alcohol and glucose. Journal of the Taiwan Institute of Chemical Engineers, 45(5), 2742–2748. https://doi.org/10.1016/j.jtice.2014.05.010

Liu, H., Yao, L., Hadj Taief, H. B., Benzina, M., Da Costa, P., & Gálvez, M. E. (2018). Natural clay-based Ni-catalysts for dry reforming of methane at moderate temperatures. Catalysis Today, 306, 51–57. https://doi.org/10.1016/j.cattod.2016.12.017

Luisetto, I., Sarno, C., De Felicis, D., Basoli, F., Battocchio, C., Tuti, S., Licoccia, S., & Di Bartolomeo, E. (2017). Ni supported on γ-Al2O3 promoted by Ru for the dry reforming of methane in packed and monolithic reactors. Fuel Processing Technology, 158, 130–140. https://doi.org/10.1016/j.fuproc.2016.12.015

Medeiros, R. L. B. A., Macedo, H. P., Melo, V. R. M., Oliveira, Â. A. S., Barros, J. M. F., Melo, M. A. F., & Melo, D. M. A. (2016). Ni supported on Fe-doped MgAl2O4 for dry reforming of methane: Use of factorial design to optimize H2 yield. International Journal of Hydrogen Energy, 41(32), 14047–14057. https://doi.org/10.1016/j.ijhydene.2016.06.246

Mette, K., Kühl, S., Tarasov, A., Düdder, H., Kähler, K., Muhler, M., Schlögl, R., & Behrens, M. (2015). Redox dynamics of Ni catalysts in CO2 reforming of methane. Catalysis Today, 242(Part A), 101–110. https://doi.org/10.1016/j.cattod.2014.06.011

Nascimento, C. R., Sobrinho, E. M. O., Assis, R. B., Fagundes, R. F., Bieseki, L., & Pergher, S. B. C. (2014). Síntese da zeólita A utilizando diatomita como fonte de sílicio e alumínio. Ceramica, 60(353), 63–68. https://doi.org/10.1590/S0366-69132014000100009

Németh, M., Schay, Z., Srankó, D., Károlyi, J., Sáfrán, G., Sajó, I., & Horváth, A. (2015). Impregnated Ni/ZrO2 and Pt/ZrO2 catalysts in dry reforming of methane: Activity tests in excess methane and mechanistic studies with labeled 13CO2. Applied Catalysis A: General, 504, 608–620. https://doi.org/10.1016/j.apcata.2015.04.006

Pirsaraei, A., Reza, S., Hasan, A. M., Ahmad, J. J., Zohreh, F., & Jafar, T. (2015). The Effect of Acid and Thermal Treatment on a Natural Diatomite. Chemistry Journal, 1(4), 144–150. http://www.aiscience.org/journal/cjhttp://creativecommons.org/licenses/by-nc/4.0/

Romário, C. P. C. et al. (2021). Development of CuO-based oxygen carriers supported on diatomite and kaolin for chemical looping combustion. Research, Society and Development, 10(4), e15110412831. https://doi.org/dx.doi.org/10.33448/rsd-v10i4.12831

Taherian, Z., Yousefpour, M., Tajally, M., & Khoshandam, B. (2017). Promotional effect of samarium on the activity and stability of Ni-SBA-15 catalysts in dry reforming of methane. Microporous and Mesoporous Materials, 251, 9–18. https://doi.org/10.1016/j.micromeso.2017.05.027

Tanniratt, P., Wasanapiarnpong, T., Mongkolkachit, C., & Sujaridworakun, P. (2016). Utilization of industrial wastes for preparation of high performance ZnO/diatomite hybrid photocatalyst. Ceramics International, 42(15), 17605–17609. https://doi.org/10.1016/j.ceramint.2016.08.074

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117

Wang, M., Zhang, Q., Zhang, T., Wang, Y., Wang, J., Long, K., Song, Z., Liu, X., & Ning, P. (2017). Facile one-pot synthesis of highly dispersed Ni nanoparticles embedded in HMS for dry reforming of methane. Chemical Engineering Journal, 313, 1370–1381. https://doi.org/10.1016/j.cej.2016.11.055

Wang, X., Wen, W., Mi, J., Li, X., & Wang, R. (2015). The ordered mesoporous transition metal oxides for selective catalytic reduction of NOx at low temperature. Applied Catalysis B: Environmental, 176–177, 454–463. https://doi.org/10.1016/j.apcatb.2015.04.038

Wang, Y., Zhang, D., & Cai, J. (2016). Fabrication and characterization of flaky core-shell particles by magnetron sputtering silver onto diatomite. Applied Surface Science, 363, 122–127. https://doi.org/10.1016/j.apsusc.2015.11.148

Xia, Y., Jiang, X., Zhang, J., Lin, M., Tang, X., Zhang, J., & Liu, H. (2017). Synthesis and characterization of antimicrobial nanosilver/diatomite nanocomposites and its water treatment application. Applied Surface Science, 396, 1760–1764. https://doi.org/10.1016/j.apsusc.2016.11.222

Yasyerli, S., Filizgok, S., Arbag, H., Yasyerli, N., & Dogu, G. (2011). Ru incorporated Ni-MCM-41 mesoporous catalysts for dry reforming of methane: Effects of Mg addition, feed composition and temperature. International Journal of Hydrogen Energy, 36(8), 4863–4874. https://doi.org/10.1016/j.ijhydene.2011.01.120

Yu, J., Zhang, Z., Dallmann, F., Zhang, J., Miao, D., Xu, H., Goldbach, A., & Dittmeyer, R. (2016). Facile synthesis of highly active Rh/Al2O3 steam reforming catalysts with preformed support by flame spray pyrolysis. Applied Catalysis B: Environmental, 198, 171–179. https://doi.org/10.1016/j.apcatb.2016.05.050

Zhang, R. J., Xia, G. F., Li, M. F., Wu, Y., Nie, H., & Li, D. D. (2015). Effect of support on catalytic performance of Ni-based catayst in methane dry reforming. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 43(11), 1359–1365. https://doi.org/10.1016/S1872-5813(15)30040-2

Downloads

Published

04/09/2021

How to Cite

ANJOS, G. C. .; OLIVEIRA, Ângelo A. S. de; MELO, D. M. de A.; MEDEIROS, R. L. B. de A.; ALMEIDA, C. C. de; SILVA, E. M. F.; SOBRINHO, E. V. A influência de Ni e Co suportados em diatomita brasileira para produção de H2 via reforma a seco do metano. Research, Society and Development, [S. l.], v. 10, n. 11, p. e388101119729, 2021. DOI: 10.33448/rsd-v10i11.19729. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/19729. Acesso em: 19 apr. 2024.

Issue

Section

Exact and Earth Sciences