In vitro biological activity of liposomal-containing antimony trioxide

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19755

Keywords:

Bacteria; Cancer; Cell Line; Nanotechnology; Repositioning.

Abstract

Antimonials are used as chemotherapy for leishmaniasis, but have limited results due to their toxicity and broad resistance already acquired by the parasites. Nanotechnology offers an alternative to reduce these effects through the use of biocompatible nanocarriers, which can be vectorized to the target site. In addition, the redirection of molecules, already developed for the treatment of other pathologies, has the advantage of being already approved for therapy by regulatory agencies. The present study addresses the production of liposomal vesicles containing antimony trioxide (LC Sb2O3), as well as the evaluation of activity against tumor and bacterial cells. We produce liposomes in order of nanometric size, polydispersity index (PDI <0.3), pH value close to physiological (7.2), and zeta potential (anionic). Cytotoxicity was evaluated in 24 and 72 hours, in the HepG2, T98G, and U87MG tumor cell lines, by the method (3-4.5 dimethylthiazole-2.5 diphenyltetrazolium bromide) (MTT). The minimum inhibitory concentration (MIC) was tested on three bacterial strains (American Type Culture Collection – ATCC-Escherichia coli ATCC 35218, Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212) and mandatory (Staphylococcus aureus and Klebsiella pneumoniae). The liposomes were more cytotoxic than Sb2O3 in the free form, for all tested cell lines. This effect was stronger after 72 hours incubation. Antimony trioxide in both free and liposomal forms showed low antibacterial activity. Based on our results, we suggest that liposomes containing antimony trioxide have the potential for the repositioning of drugs addressing anticancer therapy.

References

Ashburn, T. & Thor, K. (2004), Drug repositioning: identifying and developing new uses for existinf drugs. Nat Rev Drug Discov, 3, 673-683.

Bakker-Woudenberg, I. A. J. M., Lokerse, A. F., ten Kate, M. T., Mouton, J. W., Woodle, M. C. & Storm, G. (1993). Liposomes with prolonged blood circulation and selective localization in Klebsiella pneumoniae-infected lung tissue. Int J Infect Dis, 168,164–71.

Bakker-Woudenberg, I.A., ten Kate, M.T., Stearne-Cullen, L.E.T., Woodle, M. C. (1995). Efficacy of gentamicin or ceftazidime entrapped in liposomes with prolonged blood circulation and enhanced localization in Klebsiella pneumoniae. Int J Infect Dis, 171, 938-947.

Bangham, A., Standish, M., Watkins, J. (1965). Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol, 1, 238-252.

Chen, H., Wang, Y., Zhai, Y., Zhai, G., Wang, Z., Liu, J. (2015). Development of a ropivacaine-loaded nanostructured lipid carrier formulation for transdermal delivery. Colloids Surfaces A Physico chem Eng Asp, 465,130–136.

Da-Cruz A M. & Pirmez, C. (2015). Leishmaniose tegumentar americana. In: Coura JR, editor. Dinâmica das doenças infecciosas e parasitárias. (1a ed.).

Daeihamedet, M., Dadashzadeh, S., Haeri, A., Akhlaghi, M. (2017). Potential of liposomes for enhancement of oral drug absorption. Curr Drug Deliv, 14, 289-303.

Daraee, H., Etemadi, A., Kouhi, M., Alimirzalu, S., Akbarzadeh, A. (2016). Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol, 44, 381-391.

Desoize, B. Metais e compostos metálicos no tratamento do câncer. (2004). Anticancer Res, v.24; 1529-1535.

Di Cristina, G. & Caronia, G. (1915). Sulla terapia del la leishmaniose interna. Pathologica, 7, 82–83.

Fernandez, M., Murillo, J., Ríos-Vásquez, L.A., Ocampo-Cardona, R., Cedeño, D.L., Jones, M.A., Velez, I.D., Robledo, S.M. (2018). In vivo studies of the effectiveness of novel N-halomethylated and non-halomethylated quaternary ammonium salts in the topical treatment of cutaneous leishmaniasis. Parasitol. Res, 117(1), 273-286.

Ferrari, M. (2005). Cancer Nanotechnology: Opportunities and Challenges. Nat Rev Cancer, 5, 161–171.

Gao, W., Hu, C., Fang, R., Zhang, L. (2013). Liposome-like nanostructures for drug delivery. J Mater Chem B, 1(48), 6569–6585.

Godoi, S. N., Quatrin, P. M., Sagrillo, M. R., Nascimento, K., Wagner, R., Klein, B., Santos, R. C. V., Ourique, A. F. (2017). Evaluation of stability and in vitro security of nanoemulsions containing Eucalyptus globulus oil. Biomed Res Int, 2723418.

Hornyak, G., Tibbals, H., Dutta J., Moore, J. (2008). Introduction to nanoscience and nanotechnology, 1st Edition, Boca Raton, Londes, CRC press.

Klostergaard, J. & Seeney, C. E.(2012). Magnetic nanovectors for drug delivery.Nanomedicine: NBM, 8, 37–50.

LaVan, D. A., McGuire, T., Langer, R. (2003). Small-Scale Systems for in vivo Drug Delivery. Nat. Biotechnol, 21, 1184–1191.

Loomis, K., Mcneeley, K., Bellamkonda, R. V. (2011). Nanoparticles with targeting, triggered release, and imaging functionality for cancer applications. Soft Matter, 7, 839–856.

Losler, S., Schlief, S., Kneifel, C., Thiel, E., Schrezenmeier, H., Rojewski, M. (2009). Antimony-trioxide- and arsenic-trioxide-induced apoptosis in myelogenic and lymphatic cell lines, recruitment of caspases, and loss of mitochondrial membrane potential are enhanced by modulators of the cellular glutathione redox system. Ann Hematol, 88, 1047–1058.

Lowry, G. V., Hill., R.J, Harper, S., Rawle, A.F., Hendren, C.O., Klaessig, F., Nobbmann, U., Sayre, P., Rumble, J. (2016). Guidance to Improve the Scientific Value of Zeta Potential Measurements in nano EHS. Environ Sci Nano, 3, 953–965.

Mohanraj, V., Chen, Y., Chen, M. (2006) Nanoparticles – A Review. Trop J Pharm Res, 5, 561–73.

Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. (1983) J Immunol Methods, 65, 55-63.

Mozafari, M. R., Johnson, C., Hatziantoniou, S., Demetzos, C. (2008). Nanoliposomes and their applications in food nanotechnology. J Liposome Res,18(4), 309-327.

Nilforoushzadeh, M.A., Shirani-Bidabadi, L., Zolfaghari-Baghbaderani, A., Saberi, S., Siadat, A.H., Mahmoudi, M. (2008). Comparison of Thymus vulgaris (Thyme), Achillea millefolium (Yarrow) and propolis hydroalcoholic extracts versus systemic glucantime in the treatment of cutaneous leishmaniasis in balb/c mice. J. Vector Borne Dis, 45(4), 301-306.

World Health Organization. [citad 2020]. Available in: https://www.who.int/health-topics/cancer#tab=tab_1

World Health Organization. [citad 2019] Available in: https://apps.who.int/iris/bitstream/handle/10665/330420/9789240000193-eng.pdf

Oudard, S., Thierry, A., Jorgensen, T., Rahman, A. (1991) Sensitization of multidrug-resistant colon cancer cells to doxorubicin encapsulated in liposomes. Cancer Chemother Pharmacol, 28:259-265.

Pandey, H., Rani, R., Agarwal, V. (2016). Liposome and Their Applications in Cancer Therapy. Braz Arch Biol Technol, 59, 1-10.

Rodrigues, M.I. & Lemma, A.F. (2014). Planejamento de experimentos e otimização de processos. 3rd ed.

Salles, BC. Desenvolvimento e caracterização de vesículas lipossomais contendo trióxido de antimônio sintetizadas via energia ultrassônica. Dissertação de mestrado. Santa Maria/RS, Universidade Franciscana – UFN, 2019.

Sharma, P., Diego, Perez., Armando, C., Noe, R., Jose, LA. (2008). Perspectives of antimony compounds in oncology.Acta Pharmacol Sin, 29, 881-890.

Sharma, S., Kumar, V. (2017). In vitro cytotoxicity effect on mcf-7 cell line of co-encapsulated artesunate and curcumin liposome. J Pharm, 9, 123.

Shirzad, M., Jamehbozorgi, S., Akbarzadeh, A., Aghabozorg, H. (2016).Cytotoxicity of nanoliposomal cisplatin coated with synthesized methoxypolyethylene glycol propionaldehyde in human ovarian cancer cell line A2780CP.Trop J Pharm Res, v.15, 563-568.

Sun, W., Sanderson, E., Zheng, W. (2016). Drug combination therapy increase successful drug repositioning. Drug Discov Today, 21(7), 1189-1195.

Torchilin, V. (2007). Micellar nanocarriers: pharmaceutical perspectives. Pharm Res, 24, 1-16.

Torchilin, V. (2005). Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov, v.4, 145-160.

Vanicet, Ž., Rukavina, Z., Manner, S., Fallarero, A., Uzelac, L., Kraji, M., Klaric, D. A., Bogdanov, A., Raffai, T., Virok, D. D., Filipovic-Grcic, J., Skalko-Basnet, N. (2019). Azithromycin-liposomes as a novel approach for localized therapy of cervico vaginal bacterial infections. Int J Nanomedicine, 14, 5957-5976.

Vianna, G. Tratamento da leishmaniose tegumentar por injeções intravenosas de tártaro emético.(1912). In: 7 Congresso Brasileiro de Medicina Tropical de São Paulo,4, 426–428.

Webb, M. S., Boman, N. L., Wiseman, D. J., et al. (1998). Antimicrobial efficacy against in vivo Salmonella typhimurium infection model and pharmacokinetics of a liposomal ciprofloxacin formulation. Antimicrob Agents Chemother, 42, 45–52.

Whitesides, G. M. (2003) The ‘Right’ Size in Nanobiotechnology. Nat Biotechnol,

, 1161–1165.

Zhang, X., Liu, J., Qiao, H., Liu, H., Ni, J., Zhang, W., Shi, Y. (2010). Formulation optimization of dihydroartemisinin nanostructured lipid carrier using response surface methodology. Powder Technol, 197, 120–128.

Zhang, C., Li, S., Ji, L., Liu, S., Li, Z., Li, S., Meng, X. (2015). Design, synthesis and antitumor activity of non-comptothecin topo isomerase I inhibitors. Bioorg Med Chem Lett, 25, 4693-4696.

Downloads

Published

05/09/2021

How to Cite

VIANA, A. R. .; BOTTEGA, A.; SERAFIN, M. B. .; SALLES, B.; HORNER, R.; KRAUSE, A.; MARIA FONTANARI KRAUSE, L.; MORTARI, S. R. . In vitro biological activity of liposomal-containing antimony trioxide. Research, Society and Development, [S. l.], v. 10, n. 11, p. e391101119755, 2021. DOI: 10.33448/rsd-v10i11.19755. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/19755. Acesso em: 25 apr. 2024.

Issue

Section

Health Sciences