Use of heart rate monitors to measure heart rate variability at rest: a literature review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.20026

Keywords:

Autonomic nervous system; Determination of heart rate; Validation studies.

Abstract

The Heart Rate Variability (HRV) is a non-invasive method to estimate the cardiac autonomic control that can be measured through the electrocardiogram (ECG), the gold standard method. Portable devices that are more practical and cheaper than ECG, such as heart rate monitors, are a more convenient alternative for measuring HRV in clinical practice, but it is necessary that their results be validated in different populations. Objective: To analyze the studies carried out on the validity of heart rate monitors in comparison with the ECG for measuring HRV at rest in different populations. Methodology: This is a literature review where studies published in the Pubmed and Scielo databases were used, no lower limit of the publication date until the year 2021. The following descriptors were used in English and Portuguese: "heart rate variability" or "cardiac autonomic control" or "Electrocardiography" or "Heart Rate", being associated with the terms "heart rate monitor" and "reproducibility" or "validity" or "agreement". Results and discussion: Fifteen studies were found that evaluated the validity of different models of heart rate monitors for measuring HRV at rest, compared to ECG, in different populations (healthy adults, athletes, elderly, children, obese adolescents, individuals with injuries spinal cord and elderly), as well as its reliability in the test-retest of some devices. Conclusion: Studies have shown that different heart rate monitor models can be used as an alternative to ECG for measuring HRV, even in different populations.

References

Andrade, P. E., do Amaral, J. A. T., Paiva, L. da S., Adami, F., Raimudo, J. Z., Valenti, V. E., Abreu, L. C. de, & Raimundo, R. D. (2017). Reduction of heart rate variability in hypertensive elderly. Blood Pressure, 26(6), 350–358.

Barbosa, M. P. da C. de R., Silva, N. T. da, de Azevedo, F. M., Pastre, C. M., & Vanderlei, L. C. M. (2016). Comparison of Polar® RS800G3TM heart rate monitor with Polar® S810iTM and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest. Clinical Physiology and Functional Imaging, 36(2), 112–117.

Bassi, D., Santos-de-Araújo, A. D., Camargo, P. F., Dibai-Filho, A. V., da Fonseca, M. A., Mendes, R. G., & Borghi-Silva, A. (2018). Inter and Intra-Rater Reliability of Short-Term Measurement of Heart Rate Variability on Rest in Diabetic Type 2 Patients. Journal of Medical Systems, 42(12).

Brunetto, A. F., Roseguini, B. T., Silva, B. M., Hirai, D. M., Ronque, E. V., & Guedes, D. P. (2008). Limiar de variabilidade da freqüência cardíaca em adolecentes obesos e não-obesos. Revista Brasileira de Medicina Do Esporte, 14(2), 145–149.

Caminal, P., Sola, F., Gomis, P., Guasch, E., Perera, A., Soriano, N., & Mont, L. (2018). Validity of the Polar V800 monitor for measuring heart rate variability in mountain running route conditions. European Journal of Applied Physiology, 118(3), 669–677.

Casarin ST, Porto AR, Gabatz RIB, Bonow CA, Ribeiro JP, Mota MS. Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health (2020). J. nurs. health.; 10(5), e20104031.

Castro, P., Ferreira, A. D. S., Lopes, A. J., Paula, T. De, Costa, R. M. R., Cunha, F. A., & Vigário, P. dos S. (2021). Validity of the Polar V800 heart rate monitor for assessing cardiac autonomic control in individuals with spinal cord injury. Motriz: Revista de Educação Física, 27.

Cilhoroz, B., Giles, D., Zaleski, A., Taylor, B., Fernhall, B., & Pescatello, L. (2020). Validation of the Polar V800 heart rate monitor and comparison of artifact correction methods among adults with hypertension. PLOS ONE, 15(10), e0240220.

Compostella, L., Lakusic, N., Compostella, C., Truong, L. V. S., Iliceto, S., & Bellotto, F. (2017). Does heart rate variability correlate with long-term prognosis in myocardial infarction patients treated by early revascularization? World Journal of Cardiology, 9(1), 27.

Coote, J. H., & Chauhan, R. A. (2016). The sympathetic innervation of the heart: Important new insights. Autonomic Neuroscience, 199, 17–23.

Cygankiewicz, I., & Zareba, W. (2013). Heart rate variability. In Handbook of clinical neurology. 117, 379–393. Elsevier B.V.

Draghici, A. E., & Taylor, J. A. (2016). The physiological basis and measurement of heart rate variability in humans. Journal of Physiological Anthropology, 35(1), 22.

Gamelin, F. X., Baquet, G., Berthoin, S., & Bosquet, L. (2008). Validity of the polar S810 to measure R-R intervals in children. International Journal of Sports Medicine, 29(2), 134–138.

Gamelin, F. X., Berthoin, S., & Bosquet, L. (2006). Validity of the polar S810 Heart rate monitor to measure R-R intervals at rest. Medicine and Science in Sports and Exercise, 38(5), 887–893.

Giles, D., Draper, N., & Neil, W. (2016). Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. European Journal of Applied Physiology, 116(3), 563–571.

Hagen, E., Rekand, T., Grønning, M., & Færestrand, S. (2012). Kardiovaskulære følgetilstander etter ryggmargsskade. Tidsskrift for Den Norske Legeforening, 132(9), 1115–1120.

Huang, C.-J., Chan, H.-L., Chang, Y.-J., Chen, S.-M., & Hsu, M.-J. (2021). Validity of the Polar V800 Monitor for Assessing Heart Rate Variability in Elderly Adults under Mental Stress and Dual Task Conditions. International Journal of Environmental Research and Public Health, 18(3), 869.

Hunt, K. J., & Saengsuwan, J. (2018). Changes in heart rate variability with respect to exercise intensity and time during treadmill running. BioMedical Engineering OnLine, 17(1), 128.

Kubota, Y., Chen, L. Y., Whitsel, E. A., & Folsom, A. R. (2017). Heart rate variability and lifetime risk of cardiovascular disease: the Atherosclerosis Risk in Communities Study. Annals of Epidemiology, 27(10), 619-625.e2.

Kyriakides, A., Poulikakos, D., Galata, A., Konstantinou, D., Panagiotopoulos, E., & Chroni, E. (2019). The effect of level of injury and physical activity on heart rate variability following spinal cord injury. Journal of Spinal Cord Medicine, 42(2), 212–219.

Lorga Filho, A., Cintra, F. D., Lorga, A., Grupi, C. J., Pinho, C., Moreira, D. A. R., Sobral Filho, D. C., Brito, F. S. de, Kruse, J. C. L., & Sobral Neto, J. (2013). Recommendations of the Brazilian Society of Cardiac Arrhythmias for Holter Monitoring Services. Arquivos Brasileiros de Cardiologia, 101(2), 101–105.

Moridani, M. K., & Farhadi, H. (2017). Heart rate variability as a biomarker for epilepsy seizure prediction. Bratislava Medical Journal, 118(01), 3–8.

Nevruz, O., Yokusoglu, M., Uzun, M., Demirkol, S., Avcu, F., Baysan, O., Koz, C., Cetin, T., Sag, C., Ural, A. U., & Isik, E. (2007). Cardiac Autonomic Functions are Altered in Patients with Acute Leukemia, Assessed by Heart Rate Variability. The Tohoku Journal of Experimental Medicine, 211(2), 121–126.

Nunan, D., Gay, D., Jakovljevic, D. G., Hodges, L. D., Sandercock, G. R. H., & Brodie, D. A. (2009). Validity and reliability of short-term heart-rate variability from the Polar S810. Medicine and Science in Sports and Exercise, 41(1), 243–250.

Pereira, R. de A., Alves, J. L. de B., Silva, J. H. da C., Costa, M. da S., & Silva, A. S. (2020). Validity of a Smartphone Application and Chest Strap for Recording RR Intervals at Rest in Athletes. International Journal of Sports Physiology and Performance, 15(6), 896–899.

Plaza-Florido, A., Sacha, J., & Alcantara, J. M. (2021). Short-term heart rate variability in resting conditions: methodological considerations. Kardiologia Polska.

Plews, D. J., Scott, B., Altini, M., Wood, M., Kilding, A. E., & Laursen, P. B. (2017). Comparison of heart-rate-variability recording with smartphone photoplethysmography, polar H7 chest strap, and electrocardiography. International Journal of Sports Physiology and Performance, 12(10), 1324–1328.

Poddar, M. G., Kumar, V., & Sharma, Y. P. (2015). Automated diagnosis of coronary artery diseased patients by heart rate variability analysis using linear and non-linear methods. Journal of Medical Engineering & Technology, 39(6), 331–341.

Porto, L. G. G., & Junqueira Jr, L. F. (2009). Comparison of Time-Domain Short-Term Heart Interval Variability Analysis Using a Wrist-Worn Heart Rate Monitor and the Conventional Electrocardiogram. Pacing and Clinical Electrophysiology, 32(1), 43–51.

Radespiel-Troger, M., Rauh, R., Mahlke, C., Gottschalk, T., & Muck-Weymann, M. (2003). Agreement of two different methods for measurement of heart rate variability. Clinical Autonomic Research, 13(2), 99–102.

Rajendra Acharya, U., Paul Joseph, K., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: a review. Medical & Biological Engineering & Computing, 44(12), 1031–1051.

Rothberg, L. J., Lees, T., Clifton-Bligh, R., & Lal, S. (2016). Association Between Heart Rate Variability Measures and Blood Glucose Levels: Implications for Noninvasive Glucose Monitoring for Diabetes. Diabetes Technology & Therapeutics, 18(6), 366–376.

Shaffer, F., & Ginsberg, J. P. (2017). An Overview of Heart Rate Variability Metrics and Norms. Frontiers in Public Health, 5(September), 1–17.

Shen, M. J., & Zipes, D. P. (2014). Role of the Autonomic Nervous System in Modulating Cardiac Arrhythmias. Circulation Research, 114(6), 1004–1021.

Silva, T. P., Rolim, L. C., Sallum Filho, C., Zimmermann, L. M., Malerbi, F., & Dib, S. A. (2017). Association between severity of hypoglycemia and loss of heart rate variability in patients with type 1 diabetes mellitus. Diabetes/Metabolism Research and Reviews, 33(2).

Tadic, M., Cuspidi, C., Pencic, B., Jozika, L., & Celic, V. (2015). Relationship between right ventricular remodeling and heart rate variability in arterial hypertension. Journal of Hypertension, 33(5), 1090–1097.

Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93(5), 1043–1065.

Vanderlei, L. C. M., Pastre, C. M., Hoshi, R. A., Carvalho, T. D., & Godoy, M. F. (2009). Noções básicas de variabilidade da frequência cardíaca e sua aplicabilidade clínica. Revista Brasileira de Cirurgia Cardiovascular, 24(2), 205–217.

Vanderlei, L. C. M., Silva, R. A., Pastre, C. M., Azevedo, F. M., & Godoy, M. F. (2008). Comparison of the Polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains. Brazilian Journal of Medical and Biological Research, 41(10), 854–859.

Vasconcellos, F. V. A., Seabra, A., Cunha, F. A., Montenegro, R. A., Bouskela, E., & Farinatti, P. (2015). Heart rate variability assessment with fingertip photoplethysmography and polar RS800cx as compared with electrocardiography in obese adolescents. Blood Pressure Monitoring, 20(6), 351–360.

Wake, E., & Brack, K. (2016). Characterization of the intrinsic cardiac nervous system. Autonomic Neuroscience: Basic and Clinical, 199, 3–16.

Wallén, M. B., Hasson, D., Theorell, T., Canlon, B., Osika, W., & Ward, S. A. (2012). Possibilities and limitations of the polar RS800 in measuring heart rate variability at rest. European Journal of Applied Physiology, 112(3), 1153–1165.

Yıldız, B. S. (2016). Evaluation of heart rate variability in patients with coronary artery ectasia and coronary artery disease. Turk Kardiyoloji Dernegi Arsivi-Archives of the Turkish Society of Cardiology, 44(4), 306–314.

Published

11/09/2021

How to Cite

CASTRO, P.; LIMA, T. de P.; COSTA, R. M. R.; CUNHA, F. A. da; VIGÁRIO, P. dos S. Use of heart rate monitors to measure heart rate variability at rest: a literature review . Research, Society and Development, [S. l.], v. 10, n. 11, p. e575101120026, 2021. DOI: 10.33448/rsd-v10i11.20026. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/20026. Acesso em: 20 apr. 2024.

Issue

Section

Review Article