Phycoremediation of fish farm wastewater by Chlorella sorokiniana and autochthonous microalgae

Authors

DOI:

https://doi.org/10.33448/rsd-v10i13.20723

Keywords:

Aquaculture; Bioassay; Environmental biotechnology; Chlorophyceae; Kinetics.

Abstract

With the disorderly increase in global environmental problems, the cultivation of aquatic organisms is a promising path for sustainable food production. The quality of water, both at the entrance and exit of the production of aquatic animals, needs to be maintained following the parameters specified by local legislation. This study aimed to investigate the removal of contaminants from fish farming wastewater associated with the production of freshwater microalgae biomass. Six completely randomized treatments were used in triplicate: with the addition of microalgae C. sorokiniana in fish farm wastewater (W+Cs), the addition of C. sorokiniana in wastewater enriched with NPK fertilizing (W+F+Cs) or sugarcane vinasse (W+V+Cs), only wastewater (W), wastewater supplemented with fertilizer (W+F) or vinasse (W+V). The wastewater was used in natura to allow the development of autochthonous microalgae. The microalgae C. sorokiniana grew rapidly in effluents enriched with NPK and vinasse. After 28 days of bioassay, the concentrations of several contaminants in the water were reduced: zinc (20 to 88%), lead (5 to 83%), aluminum (56 to 75%), manganese (56 to 72%), cadmium (9 to 52%), calcium (16 to 24%) and magnesium (12 to 33%). Our results indicated that the production of microalgae biomass can be integrated with the treatment of fish farming effluents to reduce the environmental burden and increase the economic bonus for adopting a sustainable production method. However, our results also indicated the importance of introducing a microalgae strain with high productive performance and supplementing the wastewater to obtain rapid biomass.

References

Abdul Hamid, S. H., Lananan, F., Din, W.N.S., Lam, S.S., Khatoon, H., Endut, A. E. & Jusoh, A. (2014). Harvesting microalgae, Chlorella sp. By bio-flocculation of Moringa oleifera seed derivatives from aquaculture wastewater phytoremediation. International Biodeterioration & Biodegradation, 95, 270–275. 10.1016/j.ibiod.2014.06.021

Andreotti, V., Chindris, A., Brundu, G., Vallainc, D., Francavilla, M. & García, J. (2017). Bioremediation of aquaculture wastewater from Mugil cephalus (Linnaeus, 1758) with different microalgae species. Journal of Chemical Ecology, 33, 750–776. 10.1080/02757540.2017.1378351

Ansilago, M., Otonelli, F. & Carvalho, E. M. (2016). Cultivo da microalga Pseudokirchneriella subcapitata em escala de bancada utilizando meio contaminado com metais pesados. Engenharia sanitária e ambiental, 21, 3, 10.1590/S1413-41522016124295

American Public Health Association- APHA (2005) Standard Methods for the Examination of Water and Wastewater. 21st Edition, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC.

Ballester-Moltó, M., Sanchez-Jerez, P., Cerezo-Valverde, J. & Aguado-Giménez, F. (2017). Particulate waste outflow from fish-farming cages. How much is uneaten feed? Marine Pollution Bulletin, 119, 23–30. 10.1016/j.marpolbul.2017.03.004

Banerjee, G. & Ray, A. K. (2017). The advancement of probiotics research and its application in fish farming industries. Research in Veterinary Science, 115, 66–77. 10.1016/j.rvsc.2017.01.016

Barnharst, T., Rajendran, A. & Hu, B. (2018). Bioremediation of synthetic intensive aquaculture wastewater by a novel feed-grade composite biofilm. International Biodeterioration & Biodegradation, 126, 131–142. 10.1016/j.ibiod.2017.10.007

Barros, A. I., Gonçalves, A. L., Simões, M. & Pires, J. C. M. (2015). Harvesting techniques applied to microalgae: A review. Renewable & Sustainable Energy Reviews – Journal, 41, 1489–1500. 10.1016/j.rser.2014.09.037

Blanco-Carvajal, E., González-Delgado, A. D., García-Martínez, J. B., Sánchez-Galvis, E. & Barajas-Solano, A. F. (2017). Bioremediation of Aquaculture Wastewater Using Microalgae Chlorella vulgaris. Contemporary Engineering Sciences, 10 (45), 1701–1708. https://doi.org/10.12988/ces.2017.712198

Candido, C. & Lombardi, A. T. (2017). Growth of Chlorella vulgaris in treated conventional and biodigested vinasses. Journal of Applied Phycology. 29, 45–53. 10.1007/s10811-016-0940-2

Carvalho, E. M., Ottonelli, F., Ansilago, M., Godoy, H. C., Nakagaki, J. M. & Ramires, I. (2012). Growth kinetics of the microalga Pseudokirchneriella subcapitata (Korshikov) Hindak (Chlorophyceae) in natural water enriched with NPK fertilizer. Biochemistry and Biotechnology Reports, 1, 14–18. 10.5433/2316-5200.2012v1n2p14

Dias, G., Hipólito, M., Santos, F., Lourega, R., Mattia, J., Eichler, P. & Alves, J. (2019). Biorremediação de efluentes por meio da aplicação de microalgas – uma revisão. Química. Nova, 42(8), 891-899. 10.21577/0100-4042.20170393

Food and Agriculture Organization- FAO (2018). El estado mundial de la pesca y la acuicultura 2018. Cumplir los objetivos de desarrollo sostenible. Roma. Licencia: CC BY-NC-SA 3.0 IGO.

Gani, P., Mohamed Sunar, N., Matias-Peralta, H., Abdul Latiff, A. A., Parjo, U. K. E. & Oyekanmi, A, A. (2017). Green Approach in the Bio-removal of Heavy Metals from wastewaters. MATEC Web of Conferences, 103, 10.1051/matecconf/201710306007

Gautam, R. K., Sharma, S. K., Mahiya, S. E. & Chattopadhyaya, M. C. (2014). Contamination of Heavy. Metals in Aquatic Media: Transport, Toxicity and Technologies for Remediation. In: Heavy Metals in Water: Presence, Removal and Safety. Edited by Sanjay K. Sharma. The Royal Society of Chemistry. 1-24 Published by the Royal Society of Chemistry. 10.1039/9781782620174-00001

Jung, J., Damusaru, J. Hyacinth, Park, Y., Kim, K., Seong, M., Je, H., & Bai, S. C. (2017). Autotrophic biofloc technology system (ABFT) using Chlorella vulgaris and Scenedesmus obliquus positively affects performance of Nile tilapia (Oreochromis niloticus). Algal research. 27, 259-264. 10.1016/j.algal.2017.09.021

Kim, D. Y., Lee, K., Lee, J., Lee, Y. H., Han, J. I., Park, J. Y. & Oh, Y. K. (2017). Acidified-flocculation process for harvesting of microalgae: Coagulant reutilization and metal-free-microalgae recovery. Bioresource Technology, 239, 190–196. 10.1016/j.biortech.2017.05.021

Lal, A. E., & Das, D. (2016). Biomass production and identification of suitable harvesting technique for Chlorella sp. MJ 11/11 and Synechocystis PCC 6803.3. Biotechnology, 6, 41. 10.1007/s13205-015-0360-z

Liu, Y., Lv, J., Feng, J., Liu, Q., Nan, F. & Xie, S. (2018). Treatment of real aquaculture wastewater from a fishery utilizing phytoremediation with microalgae. Journal of Chemical Technology & Biotechnology, 10.1002/jctb.5837.

Lizzul, A.M., Hellier, P., Purton, S., Baganz, F., Ladommatos, N. & Campos, L. (2014). Combined remediation and lipid production using Chlorella sorokiniana grown on wastewater and exhaust gases. Bioresource Technology. 151, 12–18. 10.1016/j.biortech.2013.10.040

Lugo, L. A., Thorarinsdottir, R. I., Bjornsson, S., Palsson, O. P., Skulasson, H., Johannsson, S. & Brynjolfsson, S. (2020). Remediation of aquaculture wastewater using the microalga Chlorella sorokiniana. Water, 12, 3144. 10.3390/w12113144

Marques, S. S. I., Nascimento, I. A., Almeida, P. F. & Chinalia, F. A. (2013). Growth of Chlorella vulgaris on Sugar cane vinasse: The Effect of Anaerobic Digestion Pretreatment. Applied Biochemistry and Biotechnology, 171, 1933–1943. 10.1007/s12010-013-0481-y

Mcginn, P. J., Dickinson, K. E., Park, K. C., Whitney, C. G., Macquarrie, S. P., Black, F. J. & O'leary, S. J. B. (2012). Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Research, 1, 155–165. 10.1016/j.algal.2012.05.001

Mostafa, S. S. M. (2012). Microalgal Biotechnology: Prospects and Applications, Plant Science, Nabin Kumar Dhal and Sudam Charan Sahu, IntechOpen, 10.5772/53694.

Nunes, I. V. O., Inoue, C. H. B., Sousa, A. E. R., Carvalho, J. C. M., Gomes, A. M. A. & Matsudo, M. C. (2021). Tertiary treatment of dairy industry wastewater with production of Chlorella vulgaris biomass: evaluation of effluent dilution. Brazilian Journal of Environmental Sciences, 56 (2), 365-373. 10.5327/z21769478787

Ortegón, G. P., Arboleda, F. M., Candela, L., Tamoh, K. & Valdes-Abellan, J. (2016). Vinasse application to sugar cane fields. Effect on the unsaturated zone and groundwater at Valle del Cauca (Colombia). Science of the Total Environment, 539, 410–419. 10.1016/j.scitotenv.2015.08.153

Pires, J. C. M., Alvim-Ferraz, M. C. M., Martins, F. G. & Simões, M. (2013). Wastewater treatment to enhance the economic viability of microalgae culture. Environmental Science and Pollution Research. 20 (8), 5096–5105. 10.1007/s11356-013-1791-x

Sathasivam, R., Radhakrishnan, R., Hashem, A. & AbdAllahd, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Journal of Biological Sciences, 26 (4), 709-722. 10.1016/j.sjbs.2017.11.003 (article in press).

Satpal & Khambete, A. K. (2016). Waste Water Treatment Using Micro-Algae - A review Paper. International Engineering Management & Applied Science Journal. 4, 2.

Shivagangaiah, P. C., Sanyal, D., Dasgupta, S. & Banik, A. (2021). Phycoremediation and photosynthetic toxicity assessment of lead by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidos. Physiologia Plantarum, 10.1111/ppl.13368

Singh, P. S., Singh, M. E. & Taggar, M. S. 2017. Mass cultivation and harvesting of microalgae (Chlorella sorokiniana) for biomass and lipid production. International Journal of Chemical Science, Stud. 5 (5), 173–178.

Soto-Jiménez, M. F., (2011). Transferencia de elementos traza en tramas tróficas acúaticas. Hidrobiológica. 21, 239–248.

United States Environmental Protection Agency- USEPA (1986). Quality Criteria for Water. Office of Water Regulations and Standards Criteria Division, <https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=00001MGA.pdf>.

Wuang, S. C., Khin, M. C., Chua, P. Q. D. & Luo, Y. D. (2016). Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Research. 15, 59–64. 10.1016/j.algal.2016.02.009

Downloads

Published

11/10/2021

How to Cite

CARVALHO, E. M. de; SANTOS, C. R. dos .; ANSILAGO, M.; MENEGAZZO, M. L. .; NUNES, N. S. P. Phycoremediation of fish farm wastewater by Chlorella sorokiniana and autochthonous microalgae. Research, Society and Development, [S. l.], v. 10, n. 13, p. e259101320723, 2021. DOI: 10.33448/rsd-v10i13.20723. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/20723. Acesso em: 24 apr. 2024.

Issue

Section

Agrarian and Biological Sciences