Organic onion biofortification using microalgae and humic acid




Allium cepa L; Humic substances; Organic agriculture; Scenedesmus subspicatus.


Biofortification can be understood as a strategy to raise nutrients levels in vegetables edible structures, which can positively interfere in human diet. Biofertilizers are an interesting option in alternative production systems, as they can increase food nutritional quality and contribute to plant development, while aiding environment sustainability as natural products. The use of microalgae and humic acid as biofertilizers points to improvements in nutrients and biomolecules content in plants, however, their combined application is still unexplored. In that scenario, it was carried a study with onions about the influence of applications via root immersion in microalgae Scenedesmus subspicatus (Sc) and humic acid (HA) solutions, analyzing possible alterations of macro and micronutrients, total sugars, reducing sugar, free total amino acids, , total soluble solids,  soluble proteins and antioxidant capacity in the bulbs. Treatments consisted of one minute seedlings roots immersion from two onion cultivars in solutions containing microalgae and humic acid, and then transplanted to organic system field. There were used three concentrations: control, 0.3 g L-1 Sc + 0.3 g L-1 HA (3SH) and 0.6 g L-1 Sc + 0.6 g L-1 HA (6SH). Results show that the treatments with microalgae with humic acid association were able to increase the content of N, carbohydrates and soluble proteins, also elevating antioxidant activity in onion bulbs.


Al-Fraihat, A. H. (2009). Effect of different nitrogen and sulphur fertilizer levels on growth, yield and quality of onion (Allium cepa L.). Jordan Journal of Agricultural Sciences, 5, 155-165.

Barański, M., Rempelos, L., Iversen, P. O., & Leifert, C. (2017). Effects of organic food consumption on human health; the jury is still out! Food & Nutrition Research, 61, 1-5. doi: 10.1080/16546628.2017.1287333

Bettoni, M. M., Mogor, Á. F., Pauletti, V.; Goicoechea, N.; Aranjuelo, I., & Garmendia, I. (2016). Nutritional quality and yield of onion as affected by different application methods and doses of humic substances. Journal of Food Composition and Analysis, 51, 37-44. doi: 10.1016/j.jfca.2016.06.008

Billard, V., Etienne, P., Jannin, L., Garnica, M., Cruz, F., Garcia-Mina, J. M., & Ourry, A. (2014). Two biostimulants derived from algae or humic acid induce similar responses in the mineral content and gene expression of winter oilseed rape (Brassica napus L.). Journal of plant growth regulation, 33, 305-316. doi: 10.1007/s00344-013-9372-2

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248-254. doi: 10.1016/0003-2697(76)90527-3

Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft & Technologie, 28, 25–30. doi: 10.1016/S0023-6438(95)80008-5

Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., & Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196, 15-27. doi: 10.1016/j.scienta.2015.09.013

Conselvan, G. B., Pizzeghello, D., Francioso, O., Di Foggia, M., Nardi, S.; & Carletti, P. (2017). Biostimulant activity of humic substances extracted from leonardites. Plant and Soil, 420, 119-134. doi:

Coppens, J., Grunert, O., Van Den Hende, S., Vanhoutte, I., Boon, N., Haesaert, G., & De Gelder, L. (2016). The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. Journal of Applied Phycology, 28, 2367–2377. doi: 10.1007/s10811-015-0775-2

Dias, J.S. (2012). Nutritional quality and health benefits of vegetables: a review. Food and Nutrition Sciences, 3, 1354-1374. doi: 10.4236/fns.2012.310179

Dineshkumar, R., Subramanian, J., Arumugam, A., Rasheeq, A. A., & Sampathkumar, P. (2018). Exploring the Microalgae Biofertilizer Effect on Onion Cultivation by Field Experiment. Waste and Biomass Valorization 11, 77-87. doi: 10.1007/s12649-018-0466-8

Du, C. X., Fan, H. F., Guo, S. R., & Tezuka, T. (2010). Applying spermidine for differential responses of antioxidant enzymes in cucumber subjected to short-term salinity. Journal of the American Society for Horticultural Science, 135, 18-24. doi: 10.21273/JASHS.135.1.18

FAO (2020). Food and Agriculture Organization of the United Nations .Retrived:27 jun 2020.

Hossain, M. B., Lebelle, J., Birsan, R., & Rai, D. K. (2018). Enrichment and Assessment of the Contributions of the Major Polyphenols to the Total Antioxidant Activity of Onion Extracts: A Fractionation by Flash Chromatography Approach. Antioxidants 7: 175. doi: 10.3390/antiox7120175

Husein, M. E., El-Hassan, S. A., & Shahein, M. M. (2015). Effect of humic, fulvic acid and calcium foliar application on growth and yield of tomato plants. International Journal of Biosciences, 7, 132-140.

Karadeniz, F., Burdurlu, H. S., Koca, N., & Soyer, Y. (2005). Antioxidant activity of selected fruits and vegetable grown in Turkey. Turkish Journal of Agriculture and Forestry, 29, 297–303.

Kumar, K. S., Bhowmik, D., Chiranjib, B., & Tiwari, P. (2010). Allium cepa: A traditional medicinal herb and its health benefits. Journal of Chemical and Pharmaceutical Research, 2, 283-291.

Kurtz, C., Ernani, P. R., Pauletti, V., Menezes Junior, F. O. G., & Vieira Neto J. (2013). Produtividade e conservação de cebola afetadas pela adubação nitrogenada no sistema de plantio direto. Horticultura Brasileira, 31, 559-567. doi: 10.1590/S0102-05362013000400009

Leão, L. L., Antunes, B. A., Oliveira, C. A., Brito, M. F. S. F., & Pinho, L. D. (2018). Alimentos fontes de ferro e vitamina c consumidos entre lactentes da atenção primária à saúde. Cogitare Enfermagem, 23, 1-9. doi: 10.5380/ce.v23i2.51908

Lu, X., Wang, J., Al-Qadiri, H. M., Ross, C. F., Powers, J. R., Tang, J., & Rasco, B. A. (2011). Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chemistry, 129(2), 637-644. doi:10.1016/j.foodchem.2011.04.105

Madail, J. C. M., Belarmino, L. C., & Bini, D. A. (2015). Evolução da produção e mercado de produtos orgânicos no Brasil e no Mundo. Rca-revista científica da ajes 2: 1-9.

Magné, C., & Larher, F. (1992). High sugar contente interferes with colorimetric determination of amino acids and free proline. Analytical Biochemistry, 200, 115-118. doi: 10.1016/0003-2697(92)90285-F

Maldonade, I. R., De Carvalho, P. G. B., & Ferreira. N. A. (2013). Protocolo para determinação de açúcares totais em hortaliças pelo método de DNS. Brasília, DF: Embrapa Hortaliças (Comunicado Técnico 85). 4 p.

Mallor, C., Balcells, M., Mallor, F., & Sales, E. (2011). Genetic variation for bulb size, soluble solids content and pungency in the Spanish sweet onion variety Fuentes de Ebro. Response toselection for lowpungency. Plant Breeding, 130, 55-59. doi: 10.1111/j.1439-0523.2009. 01737.x

Martins, A. P., & Reissmann, C. B. (2007). Material vegetal e as rotinas laboratoriais nos procedimentos químico-analíticos. Scientia Agraria Paranaensis, 8, 1-17.

Nardi, S., Pizzeghello, D., Schiavon, M., & Ertani, A. (2016). Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Scientia Agricola, 73,18-23. doi: 10.1590/0103-9016-2015-0006

O'hare, T.J. (2015). Biofortification of vegetables for the developed world. Acta Horticulturae, 1106, 1-8. Doi: 10.17660/ActaHortic.2015.1106.1

Puglisi, I., La Bella, E., Rovetto, E. I., Lo Piero, A. R., & Baglieri, A. (2020). Biostimulant effect and biochemical response in lettuce seedlings treated with a Scenedesmus quadricauda extract. Plants, 9, 123. doi:

Ren, F., Reilly, K., Kerry, J. P., Gaffney, M., Hossain, M., & Rai, D. K. (2017). Higher antioxidant activity, total flavonols, and specific quercetinglucosides in two different onion (Allium cepa L.) varieties grown under organic production: Results from a 6-year study. Journal of Agricultural and Food Chemistry, 65, 5122–5132. doi: 10.1021/acs.jafc.7b01352

Renuka, N., Guldhe, A., Prasanna, R., Singh, P., & Bux, F. (2018). Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology advances, 36, 1255-1273. doi: 10.1016/j.biotechadv.2018.04.004

Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., & Tava, A. (2019). Microalgal Biostimulants and Biofertilisers in Crop Productions. Agronomy, 9, 192. doi: 10.3390/agronomy9040192

Schiavon, M., Pizzeghello, D., Muscolo, A., Vaccaro, S., Francioso, O., & Nardi, S. (2010). High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). Journal of chemical ecology, 36, 662-669. doi: 10.1007/s10886-010-9790-6

Shaaban, M.M. (2001). Green microalgae water extract as foliar feeding to wheat plants. Pakistan Journal of Biological Sciences, 4, 628–632.

Silva, F. D. A. S., & de Azevedo, C. A. V. (2016). The Assistat Software Version 7.7 and its use in the analysis of experimental data. African Journal of Agricultural Research, 11, 3733-3740. doi: 10.5897/AJAR2016.11522

Suleria, H. A. R., Butt, M. S., Anjum, F. M., Saeed, F., & Khalid, N. (2015). Onion: Nature protection against physiological threats. Critical reviews in food science and nutrition, 55, 50-66. doi:

USDA. (2019). - United States Department of Agriculture Agricultural Research Service. National Nutrient Database for Standard Reference Legacy Release. Retrived, 27 Jun. 2020.


Vaccaro, S., Ertani, A., Nebbioso, A., Muscolo, A., Quaggiotti, S., Piccolo, A., & Nardi, S. (2015). Humic substances stimulate maize nitrogen assimilation and aminoacid metabolism at physiological and molecular level. Chemical and Biological Technologies in Agriculture, 2, 5. doi: 10.1186/s40538-015-0033-5

Vethamoni, P. I., & Gomathi, M. (2018). Effect of pre harvest treatments on quality and post-harvest losses of multiplier onion (Allium cepa L. var. aggregatum Don.). Journal of Pharmacognosy and Phytochemistry, 7, 2358-2362.

Vianna, D. T., Resende, G. F., Torres-Leal, F. L., & Tirapegui, J. (2010). Protein synthesis regulation by leucine. Brazilian Journal of Pharmaceutical Sciences, 46, 29-36.

Vidigal, S. M., Moreira, M. A.; & Pereira, P. R. G. (2010). Crescimento e absorção de nutrientes pela planta cebola cultivada no verão por semeadura direta e por transplantio de mudas. Bioscience Journal, 26, 59-70.

White, P. J., & Broadley, M. R. (2005). Biofortifying crops with essential mineral elements. Trends in plant science, 10, 586-593. doi: 10.1016/j.tplants.2005.10.001

Winters, A. L., Lloyd, J. D., Jones, R., & Merry, R. J. 2002. Evaluation of a rapid method for estimating free amino acids in silages. Animal feed science and technology, 99, 1-4. doi: 10.1016/S0377-8401(02)00112-8

Zhang, C., Zhang, H., & Zhan, Z. (2016). Transcriptome Analysis of Sucrose Metabolism during Bulb Swelling and Development in Onion (Allium cepa L.). Frontiers in Plant Science , 7: 1425. doi:10.3389/fpls.2016.01425




How to Cite

GEMIN, L. G.; LARA, G. B. de .; MÓGOR, Átila F. .; MÓGOR, G.; QUEIROZ, C. de . Organic onion biofortification using microalgae and humic acid. Research, Society and Development, [S. l.], v. 10, n. 13, p. e320101321432, 2021. DOI: 10.33448/rsd-v10i13.21432. Disponível em: Acesso em: 7 dec. 2023.



Agrarian and Biological Sciences