Performance and blood parameters of Holstein/Zebu crossbred heifers fed with two tannins sources

Authors

DOI:

https://doi.org/10.33448/rsd-v9i2.2150

Keywords:

Tannic acid; Intake; Digestibility; Hepatotoxicity.

Abstract

The present research objective was to evaluate the performance and blood parameters of lactating cows fed with a diet of two tannin sources, based on sorghum (condensed tannin)  with increasing concentrations of tannic acid (hydrolyzable tannin’s). Increasing levels of tannic acid in a sorghum-based diet for five Holstein/Zebu crossbred lactating cows were subject to a 5 × 5 Latin square experimental design. To assess the effect on cow intake, digestibility, milk production, and blood parameters. All cows received 9.87 kg/DM of corn silage as roughage and 6.38 kg of concentrate consisting of 2.58 kg/DM of ground sorghum 0.87 kg/DM of cornmeal 1.32 kg/DM of soybean bran 0.44 kg/DM of wheat bran 0.2 kg/ DM of urea and 0.18 kg/ DM of mineral mixture. Diet 1 (control) contained low-tannin sorghum and the other diets contained high-tannin sorghum. The levels of tannic acid added to the diets were established based on the quantity of condensed tannin in high-tannin sorghum. Thus, diets 2, 3, 4 and 5 were supplemented with 1.5g (13.%DM), 79.5g (2.6%DM), 157.5g (3.9%DM) and 235.5g (5.2%DM) of tannic acid, totalling 0.078, 0.156, 0.234 and 0.321 total tannin kg/day respectively, to assess the effect on microbial protein synthesis. The diets contained 35 kg of corn silage (roughage) and 6.40 kg of concentrate. The natural and dry matter intake did not significantly differ between groups, except for ether extract (EE) intake that significantly differed. The DM apparent digestibility, crude protein, EE, neutral detergent fiber, total carbohydrate, and non-fibrous carbohydrate did not differ (P > 0.05) with the increase in dietary tannin supplementation. The GOT levels increased linearly. The blood glucose, triglyceride, and cholesterol (total, LDL and HDL) levels did not significantly differ. Hemoglobin showed a significant difference. No significant difference in urea, creatinine and uric acid occurred. Diets using two tannins sources supplementation caused no decrease in the dietary intake or digestibility in the animals. The GOT level changed significantly, showing linear behavior, however below the toxicity level, without any change in the other blood parameters. Milk production decreased with the increase in dietary tannin supplementation. 

References

Chang, M. J., Bailey, J. W. ., & Collins, J. L. (1994). Dietary tannins from cowpeas and tea transiently alter apparent calcium absorption and utilization of protein in rats. Journal of Nutrition, 124, 283–288.

Chen, X.B., Gomes, M. J. (1992). Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives - an overview of technical details. International Feed Research Unit. Bucksburnd, Aberdeen, Scotland: Rowett Research Institute.

Chung, K.T., Wong, T.Y., Wei, C. I. ., Huang, Y.W., Lin, Y. (1998). Tannins and Human Health: A Review. Critical Reviews in Food Science and Nutrition, 38(6), 421–464. https://doi.org/10.1080/10408699891274273.

Detmann. E., Souza, M. A., Valadares Filho, S. C., Queiroz, A. C., Berchielli, T. T., Saliba, E.O.S., Cabral, L.S., Pina, D.S., Ladeira, M. M., Azevedo, J. A. G. (2012). Métodos para análise de alimentos (INCT), Ciência Animal. Visconde do Rio Branco, Porto Alegre, Brazil.

Folch, J., Lees, M., Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biology and Chemistry, 226, 497.

Getachew, G., Pittroff, W., Putnam, D. H., Dandekar, A., Goyal, S., DePeters, E. J. (2008). The influence of addition of gallic acid, tannic acid, or quebracho tannins to alfalfa hay on in vitro rumen fermentation and microbial protein synthesis. Animal Feed Science and Technology, 140(3–4), 444–461. https://doi.org/10.1016/j.anifeedsci.2007.03.011.

Goel, G., Puniya, A. K., Aguilar, C. N., Singh, K. (2005). Interaction of gut microflora with tannins in feeds. Naturwissenschaften, 92(11), 497–503. https://doi.org/10.1007/s00114-005-0040-7.

González, F. H. D., Scheffer, J. F. S. (2002). Perfil sanguíneo: ferramenta de análise clínica, metabólica e nutricional. In S. J. González FHD (Ed.), Avaliação metabólico-nutricional de vacas leiteiras por meio de fluidos corporais. Porto Alegre.

Grabber, J. H. (2009). Protein fractions in forage legumes containing protein-binding polyphenols: Freeze-drying vs. conservation as hay or silage. Animal Feed Science and Technology, 151(3–4), 324–329. https://doi.org/10.1016/j.anifeedsci.2009.01.019.

Grainger, C., Clarke, T., Auldist, M. J., Beauchemin, K. A., McGinn, S. M., Waghorn, G. C., Eckard, R. J. (2009). Condensed Tannins To Reduce Methane Emissions and Nitrogen Excretion From Grazing Dairy Cows. Canadian Journal of Animal Science, 89(2), 241–251. https://doi.org/10.4141/CJAS08110.

Hagerman, A. E., Butler, L. G. (1978). No Title. Journal of Agricultural and Food Chemistry, 26(4), 809–812.

Hall, M. B. (1999). Neutral detergent-soluble carbohydrates nutritional relevance and analysis (Institute). University of Florida.

Kaneko, J. J., Harvey, J. W., Bruss, M. L. (1997). Clinical biochemistry of domestic animals (5th editio). New York: Academic Press.

Makkar, H. P. S., Blümmel, M., Becker, K. (1995). In vitro effects and interactions of tannins and saponins and fate of tannins in rumen. Journal of Science Food and Agriculture, 69, 481–493.

Monteiro, J. M., De Albuquerque, U. P., De Lima Araújo, E., Cavalcanti De Amorim, E. L. (2005). Taninos: Uma abordagem da química à ecologia. Quimica Nova, 28(5), 892–896. https://doi.org/10.1590/S0100-40422005000500029.

Mueller-Harvey, I. (2006). Unravelling the conundrum of tannins in animal nutrition and health. Journal of the Science of Food and Agriculture, 86(2), 2010–2037. https://doi.org/10.1002/jsfa.

National Research Council – NRC. (2001). Nutrient requirements of the dairy cattle (7th ed.). Washington: D.C.

Naumann, H. D., Tedeschi, L. O., Zeller, W. E., Huntley, N. F. (2017). The role of condensed tannins in ruminant animal production: advances, limitations and future directions. Revista Brasileira de Zootecnia 46(12):929-949. Revista Brasileira de Zootecnia. http://dx.doi.org/10.1590/S1806-92902017001200009

Patra, A. K. (2011). Effects of essential oils on Rumen fermentation, microbial ecology and Ruminant production. Asian Journal of Animal and Veterinary Advances. https://doi.org/10.3923/ajava.2011.416.428.

Patra, A. K., Saxena, J. (2011). Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. Journal of the Science of Food and Agriculture, 91(1), 24–37. https://doi.org/10.1002/jsfa.4152.

Statistical Analysis System Institute. (2010). Statistical Analysis System Institute (Institute).

Sniffen, C. J., O’Connor, J. D., Van Soest, P.J., Fox, D. G., Russel, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science, 70(11), 3562–3577.

Terrill, T.H.; Rowan, A.M.; Douglas, G.B.; Barry, T. N. (1992). Determination of extractable and bound condensed tannin concentration in forage plants, protein concentrate meals and cereal grains. Journal of the Science of Food and Agriculture, 58, 321–329.

Waghorn, G. (2008). Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-Progress and challenges. Animal Feed Science and Technology, 147(1–3), 116–139. https://doi.org/10.1016/j.anifeedsci.2007.09.013.

Downloads

Published

01/01/2020

How to Cite

SOUZA, C. G. de; NETO, S. G.; HENRIQUES, L. T.; ARAÚJO, G. G. L.; DIAS, L. T. S.; MUNIZ, A. J. C. Performance and blood parameters of Holstein/Zebu crossbred heifers fed with two tannins sources. Research, Society and Development, [S. l.], v. 9, n. 2, p. e128922150, 2020. DOI: 10.33448/rsd-v9i2.2150. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/2150. Acesso em: 26 apr. 2024.

Issue

Section

Agrarian and Biological Sciences