Effect of the simultaneous presence of sodium and potassium cations on the hydrothermal synthesis of MCM-22 zeolite

Authors

DOI:

https://doi.org/10.33448/rsd-v10i14.21744

Keywords:

Zeolite; Hydrothermal synthesis; MCM-22; Alkali cations.

Abstract

The hydrothermal synthesis of MCM-22 zeolite was investigated in reaction systems with different proportions of sodium and potassium cations. The potassium content R, defined as the molar ratio between potassium and the total inorganic cations amounts in the synthesis mixture, varied from 0 to 0.9, keeping constant the cationic concentration and the alkalinity of the system. The materials were characterized by X-ray diffraction (XRD), N2 adsorption/desorption and scanning electron microscopy (SEM). The K+ ions favored the formation of MCM-22 when 45% of sodium was replaced by potassium, reducing the time required to synthesize the MCM-22(P) precursor and producing more crystalline samples. Furthermore, the relative amounts of Na+ and K+ ions remarkably affected the morphology and particle size of the samples. The use of higher potassium contents (R = 0.68 – 0.9) hindered the crystallization of MCM-22 zeolite. Thus, the use of reaction mixtures with adequate proportions of Na+ and K+ can be an effective strategy to produce highly crystalline samples in shorter times, reducing the cost of synthesis of such zeolite

References

Aiello, R., Crea, F., Testa, F., Demortier, G., Lentz, P., Wiame, M., & Nagy, J. B. (2000). Synthesis and characterization of aluminosilicate MCM-22 in basic media in the presence of fluoride salts. Microporous and Mesoporous Materials, 35-36, 585-595. https://doi.org/10.1016/S1387-1811(99)00252-8

Basaldella, E. I., & Tara, J. C. (1995). Synthesis of LSX zeolite in the NaK system: Influence of the NaK ratio. Zeolites, 15(3), 243–246. https://doi.org/10.1016/0144-2449(94)00006-E

Camblor, M. A., & P6rez-Pariente, J. (1991). Crystallization of zeolite beta: Effect of Na and K ions. Zeolites, 11(3), 202-220. https://doi.org/10.1016/S0144-2449(05)80220-9

Carriço, C. S., Cruz, F. T., Santos, M. B., Pastore, H. O., Andrade, H. M. C., & Mascarenhas, A. J. S. (2013). Efficiency of zeolite MCM-22 with different SiO2/Al2O3 molar ratios in gas phase glycerol dehydration to acrolein. Microporous and Mesoporous Materials, 181, 74–82. https://doi.org/10.1016/j.micromeso.2013.07.020

Corma, A., Corell, C., & Pérez-Pariente, J. (1995). Synthesis and characterization of the MCM-22 zeolite. Zeolites, 15(1), 2-8. https://doi.org/10.1016/0144-2449(94)00013-I

Davis, M. E. (2014). Zeolites from a materials chemistry perspective. Chemistry of Materials, 26, 239–245. https://doi.org/10.1021/cm401914u

Degnan, T. F. (2007). Recent progress in the development of zeolitic catalysts for the petroleum refining and petrochemical manufacturing industries. In R. Xu, Z. Gao, J. Chen, & W. Yan (Eds.), From Zeolites to Porous MOF Materials: the 40th Anniversary of International Zeolite Conference, Proceedings of the 15th International Zeolite Conference (pp. 54–65). Elsevier. https://doi.org/10.1016/S0167-2991(07)80825-1

Díaz, U., Fornés, V., & Corma, A. (2006). On the mechanism of zeolite growing: Crystallization by seeding with delayered zeolites. Microporous and Mesoporous Materials, 90(1-3 SPEC. ISS.), 73–80. https://doi.org/10.1016/j.micromeso.2005.09.025

Fechete, I., Wang, Y., & Védrine, J. C. (2012). The past, present and future of heterogeneous catalysis. Catalysis Today, 189(1), 2–27. https://doi.org/10.1016/J.CATTOD.2012.04.003

Güray, I., Warzywoda, J., Baç, N., & Sacco, A. (1999). Synthesis of zeolite MCM-22 under rotating and static conditions. Microporous and Mesoporous Materials, 31, 241-251. https://doi.org/10.1016/S1387-1811(99)00075-X

Khaleque, A., Alam, M. M., Hoque, M., Mondal, S., Haider, J. B., Xu, B. Johir, M. A. H., Karmakar, A. K., Zhou, J. L., Ahmed, M. B., & Moni, M. A. (2020). Zeolite synthesis from low-cost materials and environmental applications: A review. Environmental Advances, 2, Article 100019. https://doi.org/10.1016/J.ENVADV.2020.100019

Kirschhock, C. E. A., Feijen, E. J. P., Jacobs, P. A., & Martens, J. A. (2008). Hydrothermal Zeolite Synthesis. In G. Ertl, H. Knözinger, F. Schüth, & J. Weitkamp (Eds.), Handbook of Heterogeneous Catalysis (2nd ed., pp. 160-178). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527610044.hetcat0010

Laredo, G. C., Quintana-Solórzano, R., Castillo, J. J., Armendáriz-Herrera, H., & Garcia-Gutierrez, J. L. (2013). Benzene reduction in gasoline by alkylation with propylene over MCM-22 zeolite with a different Brønsted/Lewis acidity ratios. Applied Catalysis A: General, 454, 37–45. https://doi.org/10.1016/j.apcata.2013.01.001

Lawton, S. L., Leonowicz, M. E., Partridge, R. D., Chu, P., & Rubin, M. K. (1998). Twelve-ring pockets on the external surface of MCM-22 crystals. Microporous and Mesoporous Materials, 23(1-2), 109-117. https://doi.org/10.1016/S1387-1811(98)00057-2

Lawton, S. L, Fung, A. S., Kennedy, G. J., Alemany, L. B., Chang, C. D., Hatzikos, G. H., Lissy, D. N., Rubin, M. K., Timken, H. C., Steuernagel, S., Woessner, D. E. (1996). Zeolite MCM-49: A Three-Dimensional MCM-22 Analogue Synthesized by in Situ Crystallization. The Journal of Physical Chemistry, 100, 3788-3798. https://doi.org/10.1021/jp952871e

Leofanti, G., Padovan, M., Tozzola, G., & Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis Today, 41, 207-219. https://doi.org/10.1016/S0920-5861(98)00050-9

Li, Y., & Yu, J. (2021). Emerging applications of zeolites in catalysis, separation and host–guest assembly. Nature Reviews Materials. https://doi.org/10.1038/s41578-021-00347-3

Marques, A. L. S., S., Monteiro, J. L. F., & Pastore, H. O. (1999). Static crystallization of zeolites MCM-22 and MCM-49. Microporous and Mesoporous Materials, 32, 131-145. https://doi.org/10.1016/S1387-1811(99)00099-2

Nishi, K., & Thompson, R. W. (2002). Synthesis of Classical Zeolites. In F. Schüth, K. S. W. Sing, & J. Weitkamp (Eds.), Handbook of Porous Solids (pp. 736-814). Wiley-VCH Verlag GmbH. https://doi.org/10.1002/9783527618286.ch18a

Ravishankar, R., Li, M. M., & Borgna, A. (2005). Novel utilization of MCM-22 molecular sieves as supports of cobalt catalysts in the Fischer-Tropsch synthesis. Catalysis Today, 106(1–4), 149–153. https://doi.org/10.1016/j.cattod.2005.07.123

Roth, W. J., Chlubná, P., Kubů, M., & Vitvarová, D. (2013). Swelling of MCM-56 and MCM-22P with a new medium - Surfactant- tetramethylammonium hydroxide mixtures. Catalysis Today, 204, 8–14. https://doi.org/10.1016/j.cattod.2012.07.040

Rouquerol, F., Rouquerol, J., Sing, K. S. W., Llewellyn, P., Maurin. (2014). Adsorption by Powders and Porous Solids: Principles, Methodology and Applications (2nd ed.). https://doi.org/10.1016/C2010-0-66232-8

Shi, J., Wang, Y., Yang, W., Tang, Y., & Xie, Z. (2015a). Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 44, 8877–8903. Royal Society of Chemistry. https://doi.org/10.1039/c5cs00626k

Shi, Y., Xing, E., Xie, W., Zhang, F., Mu, X., & Shu, X. (2015b). Directing gel: An effective method tailoring morphology of MWW zeolites and their catalytic performance in liquid-phase alkylation of benzene with ethylene. Microporous and Mesoporous Materials, 215, 5–18. https://doi.org/10.1016/j.micromeso.2015.04.041

Sig Ko, Y., & Seung Ahn, W. (2004). Crystallization of zeolite L from Na2O-K2O-Al2O3-SiO2-H2O system. Powder Technology, 145(1), 10–19. https://doi.org/10.1016/j.powtec.2004.03.016

Suzuki, Y., Wakihara, T., Itabashi, K., Ogura, M., & Okubo, T. (2009). Cooperative effect of sodium and potassium cations on synthesis of ferrierite. Topics in Catalysis, 52(1–2), 67–74. https://doi.org/10.1007/s11244-008-9136-6

Vuono, D., Pasqua, L., Testa, F., Aiello, R., Fonseca, A., Korányi, T. I., & Nagy, J. B. (2006). Influence of NaOH and KOH on the synthesis of MCM-22 and MCM-49 zeolites. Microporous and Mesoporous Materials, 97(1–3), 78–87. https://doi.org/10.1016/j.micromeso.2006.07.015

Wu, Y., Ren, X., Lu, Y., & Wang, J. (2008). Crystallization and morphology of zeolite MCM-22 influenced by various conditions in the static hydrothermal synthesis. Microporous and Mesoporous Materials, 112(1–3), 138–146. https://doi.org/10.1016/j.micromeso.2007.09.022

Wu, Y., Ren, X., & Wang, J. (2009). Facile synthesis and morphology control of zeolite MCM-22 via a two-step sol–gel route with tetraethyl orthosilicate as silica source. Materials Chemistry and Physics, 113(2–3), 773–779. https://doi.org/10.1016/J.MATCHEMPHYS.2008.08.008

Downloads

Published

30/10/2021

How to Cite

QUINTELA, P. H. L.; LIMA, W. S.; SILVA, B. J. B. da; SILVA, A. O. S. da; RODRIGUES, M. G. F. Effect of the simultaneous presence of sodium and potassium cations on the hydrothermal synthesis of MCM-22 zeolite. Research, Society and Development, [S. l.], v. 10, n. 14, p. e192101421744, 2021. DOI: 10.33448/rsd-v10i14.21744. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/21744. Acesso em: 25 apr. 2024.

Issue

Section

Engineerings