Effect of photoexposure on antimicrobial activity of Amazonian basidiomycetes

Authors

DOI:

https://doi.org/10.33448/rsd-v10i14.22069

Keywords:

Amazonian fungi; Bioactive compounds; Antibacterial; Antifungal.

Abstract

Microorganisms are a promising source of new molecules and a good alternative in the search for antimicrobials. However, their cultivation conditions can influence both their development and their production of biomolecules. The aim of this work was to evaluate the effect of photoexposure on the antimicrobial activity of eight basidiomycetes. These were grown on malt agar medium, at room temperature, maintained with or without photoexposure for ten days. Extracts were obtained with ethyl acetate, which were tested by the agar diffusion method against the pathogens Escherichia coli CBAM 001, Staphylococcus aureus CBAM 0324 and Candida albicans CFAM 1342. The molecular identification of the basidiomycetes was carried out by amplifying and sequencing the fragment of rDNA. The fungi Pleurotus sp. 474 and Gloeophyllum sp. 1153 inhibited the growth of E. coli CBAM 001, S. aureus CBAM 0324 e C. albicans CFAM 1342. None of these pathogens were inhibited by the fungus Schizophyllum commune 1210. The photoexposure was essential for the fungus Earliella scabrosa 1552 to inhibit the growth of C. albicans, while the absence of photoexposure was essential for the fungus Pleurotus sp. 474 inhibit the growth of S. aureus CBAM 0324 and, the fungi Gloeophyllum sp. 1153, Trametes sp. 1232 and Oudemansiella canarii 1528 inhibit E. coli CBAM 001. These results showed the influence of photoexposure on the production of antimicrobials by basidiomycetes, reinforcing the importance of choosing culture conditions.

Author Biographies

Karen Kelly Carvalho de Oliveira, Instituto Nacional de Pesquisas da Amazônia

National Institute of Amazonian Research

Technology and Innovation Coordination

Thaíssa Cunha de Oliveira, Instituto Nacional de Pesquisas da Amazônia

National Institute of Amazonian Research

Technology and Innovation Coordination

Ormezinda Celeste Cristo Fernandes, Fundação Oswaldo Cruz - Instituto Leônidas e Maria Deane

Biodiversity Laboratory, Oswaldo Cruz Foundation - Instituto Leônidas and Maria Deane

Pedro Queiroz Costa Neto, Universidade Federal do Amazonas

Laboratory of Bioactive Principles of Microbial Origin, Federal University of Amazonas

Maria Aparecida de Jesus, Instituto Nacional de Pesquisas da Amazônia

National Institute of Amazonian Research
Technology and Innovation Coordination

References

Adebayo, E. A., Martiínez-Carrea, D., Morales, P., Sobal, M., Escudero, H., Meneses, M. E., Avila-Nava, A., Castillo, I. & Bonilla, M. (2018) Comparative study of antioxidant and antibacterial properties of the edible mushrooms Pleurotus levis, P. ostreatus, P. pulmonarius and P. tuber-regium. International Journal of Food Science and Technology, 53(5):1316-1330. DOI: https://doi.org/10.1111/ijfs.13712

Alves, M. J., Ferreira, I. C. F. R., Dias, J., Teixeira, V., Martins, A. & Pintado, M. (2013). A review on antifungal activity of mushroom (Basidiomycetes) extracts and isolated compounds. Current Topics in Medicinal Chemistry, 13(21):2648-2659. DOI: 10.2174/15680266113136660191

Avin, F. A., Bhassu, S., Tan, Y. S., Shahbazi, P. & Vikineswary, S. (2014). Molecular Divergence and Species Delimitation of the Cultivated Oyster Mushrooms: Integration of IGS1 and ITS. The Scientific World Journal, 2014:1-10. DOI: https://doi.org/10.1155/2014/793414

Cheng, G., Dai, M., Ahemd, S., Hao, H., Wang, X. & Yuan, Z. (2016). Antimicrobial drugs in fighting against antimicrobial resistance. Frontiers in Microbiology, 7(470):1-27. DOI: 10.3389/fmicb.2016.00470

Correa, R. C. G., Souza, A. H. P., Calhelha, R. C., Barros, L., Glamoclija, J., Sokovic, M., Peralta, R. M., Bracht, A. & Ferreira, I. C. F. R. (2015). Bioactive formulations prepared from fruiting bodies and submerged culture mycelia of the Brazilian edible mushroom Pleurotus ostreatoroseus Singer. Food & Function, 6(7):2155–2164. DOI: 10.1039/c5fo00465a

Farha, M. A. & Brown, E. D. (2016). Strategies for target identification of antimicrobial natural products. Natural Products Reports, 33(5):668–680. DOI: 10.1039/c5np00127g

Gebreyohannes, G., Nyerere, A., Bii, C. & Sbhatu, D. B. (2019). Determination of Antimicrobial Activity of Extracts of Indigenous Wild Mushrooms against Pathogenic Organisms. Evidence-Based Complementary and Alternative Medicine, 2019:1-7. DOI: https://doi.org/10.1155/2019/6212673

Guo, Z. (2017). The modification of natural products for medical use. Acta Pharmaceutica Sinica B, 7(2):119-136, 2017. DOI: 10.1016/j.apsb.2016.06.003

He, M. Q., Zhao, R.L., Hyde, K. D., Begerow, D., Kemler, M., Yurkov, A. et al. (2019). Notes, outline and divergence times of Basidiomycota. Fungal Diversity, 99:105–367. DOI: https://doi.org/10.1007/s13225-019-00435-4

Kandasamy, S., Chinnappan, S., Thangaswamy, S., Balakrishnan, S. & Khalifa, A.Y.Z. (2019). Assessment of Antioxidant, Antibacterial Activities and Bioactive Compounds of the Wild Edible Mushroom Pleurotus sajor‑caju. International Journal of Peptide Research and Therapeutics, 26, p.1575–1581, 2019. DOI: https://doi.org/10.1007/s10989-019-09969-2

Jorcin, G., Barneche, S., Vázquez, A., Cerdeiras, M. P. & Alborés, S. (2017). Effects of Culture Conditions on Antimicrobial Activity of Ganoderma resinaceum (Agaricomycetes) Extracts. International Journal of Medicinal Mushrooms, 19(8):737–744. DOI: 10.1615/IntJMedMushrooms.2017021217

Liew, G. M., Khong, H. Y. & Kutoi, C. J. (2015). Phytochemical Screening, Antimicrobial and Antioxidant Activities of Selected Fungi from Mount Singai, Sarawak, Malaysia. International Journal of Research Studies in Biosciences, 3, n.1, p.191-197.

Madhanraj, R., Ravikumar, K., Maya, M. R., Ramanaiah, I., Venkatakrishna, K., Rameshkumar, K., Veeramanikandan, V., Eyini, M., & Balaji, P. (2019). Evaluation of anti-microbial and anti-haemolytic activity of edible basidiomycetes mushroom fungi. Journal of Drug Delivery and Therapeutics, 9(1):132-135, 2019. DOI: https://doi.org/10.22270/jddt.v9i1.2277

Melo, M. R., Paccola-Meirelles, L.D., Faria, T.J. & Ishikawa, N. K. (2009). Influence of Flammulina velutipes mycelia culture conditions on antimicrobial metabolite production. Mycoscience, 50(1):78-81. DOI: https://doi.org/10.1007/S10267-008-0447-Z

Mirfat, A. H. S., Noorlidah, A. & Vikineswary, S. (2014). Antimicrobial activities of split gill mushroom Schizophyllum commune Fr. American Journal of Research Communication, 2(7):113-124.

Peng, T. Y. & Don, M. M. (2013). Antifungal Activity of In-vitro Grown Earliella scabrosa, a Malaysian Fungus on Selected Wood-degrading Fungi of Rubberwood. Journal of Physical Science, 24(2):21-33.

Rasser, F., Anke, T. & Sterner, O. (2000). Secondary metabolites from a Gloeophyllum species. Phytochemistry, 54(5):511-516. DOI: https://doi.org/10.1016/S0031-9422(00)00137-0

Rungjindamai, N., Pinruan, U., Choeyklin, R., Hattori, T. & Jones, E. B. G. (2008). Molecular characterization of basidiomycetous endophytes isolated from leaves, rachis and petioles of the oil palm, Elaeis guineensis, in Thailand. Fungal diversity, 33:139-161, 2008.

Sandargo, B., Chepkirui, C., Cheng, T., Chaverra-Muñoz, L., Thongbai, B., Stadler, M. & Hüttel, S. (2019). Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnology Advances, 37(6):1-33. DOI: https://doi.org/10.1016/j.biotechadv.2019.01.011

Seifert, K. A. (2009). Progress towards DNA barcoding of fungi. Molecular Ecology Resources, 9, Suppl.1, p.83-89. DOI: https://doi.org/10.1111/j.1755-0998.2009.02635.x

Singh, P. K., Kathuria, S., Agarwal, K., Gaur, S. N., Meis, J. F. &Chowdhary, A. (2013). Clinical Significance and Molecular Characterization of Nonsporulating Molds Isolated from the Respiratory Tracts of Bronchopulmonary Mycosis Patients with Special Reference to Basidiomycetes. Journal of Clinical Microbiology, 51(10):3331-3337. DOI: 10.1128/JCM.01486-13

Vahidi, H. & Namjoyan, F. (2004). Evaluation of Antimicrobial Activity of Oudemansiella sp. (Basidiomycetes). Iranian Journal of Pharmaceutical Research, 3(2):115-117. DOI: 10.22037/IJPR.2010.586

Published

02/11/2021

How to Cite

OLIVEIRA, K. K. C. de .; OLIVEIRA, T. C. de .; FERNANDES, O. C. C. .; COSTA NETO, P. Q.; JESUS, M. A. de .; OLIVEIRA, L. A. de. Effect of photoexposure on antimicrobial activity of Amazonian basidiomycetes. Research, Society and Development, [S. l.], v. 10, n. 14, p. e320101422069, 2021. DOI: 10.33448/rsd-v10i14.22069. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/22069. Acesso em: 24 apr. 2024.

Issue

Section

Agrarian and Biological Sciences