Social networks and bibliometrics on the use of UAVs in hydrological risk mapping in urban areas

Authors

DOI:

https://doi.org/10.33448/rsd-v10i14.22078

Keywords:

Drones; Digital Elevation Model; Digital Surface Models; Photogrammetry; VOSViewer.

Abstract

This study aims to carry out research in the Scopus and Web of Science databases in order to search for works related to water mapping with a focus on risk areas using UAVs. The VOSViewer software generates infographics based on the node system displaying the main search terms, authors, recurring elements and keywords. Quantitatively categorizing the works into collaborating authors, approach to the topic, types of publications, main journals, indexes, main countries, collaboration networks and keywords, he indicated the main works pertinent to the topic, in which these were discussed to verify how the topic is approached. 91.15% of the works are written in English, with the US being the second country that publishes the most about, in the rear of China. The main terms concatenated in the research are UAV - Unmanned Aerial Vehicles, Photogrammetry and DEM - Digital Elevation Model, which allude to the use of UAVs to obtain the MDE and MDS by the photogrammetric method. Among the works, 10 presented methodological material and promising results in the use of UAV ́ for hydrological risk mapping, with emphasis on the work of Mazzoleni, Muthusamy Annis, Luppichini, who present image processing software (Agisoft PhotoScan) and hydrodynamic simulations of water pluvial and fluvial (FLO-2D and HEC-RAS). Therefore, this study made it possible to recognize methodological approaches, trends, difficulties and the advantages of the UAV tool in technical application, such as high precision, relatively low cost and reach in areas of difficult access.

References

Abidin, K. H. Z. K. Z. Razi, M. A. M. Bukari, S. M. (2018). Analysis the Accuracy of Digital Elevation Model (DEM) for Flood Modelling on Lowland Area. In IOP Conference Series: Earth and Environmental Science, IOP Publishing. 140, 1, 012014. doi: 10.1088/1755-1315/140/1/012014

About ArcGIS. Mapping & Analytics Software and Services. 10.1 Version, 2012. Disponível em: https://www.esri.com/en-us/arcgis/about-arcgis/overview. Acessado em: 13 de jun de 2020.

Agência Nacional de Aviação Civil ANAC Regulamento Brasileiro (2018). Especial–RBAC–E nº 94. Requisitos Gerais para Aeronaves Não Tripuladas de Uso Civil. Resolução, n. 419. <https://www.anac.gov.br/assuntos/legislacao/legislacao-1/rbha-e-rbac/rbac/rbac-e-94-emd-01/@@display-file/arquivo_norma/RBACE94EMD01.pdf>

Agisoft LLC Agisoft PhotoScan User Manual Professional Edition, Version 1.5, 2018. Disponível em: https://www.agisoft.com/pdf/photoscan-pro_1_4_en.pdf. Acessado em: 11 de jun. 2020.

Annis, A.; Nardi, F.; Petroselli, A.; Apollonio, C.; Arcangeletti, E.; Tauro, F.; Grimaldi, S (2020). UAV-DEMs for small-scale flood hazard mapping. Water, 12(6), 1717. https://doi.org/10.3390/w12061717 Hardgrave, O. Pioneirismo com o Vant: Estados Unidos da América, 2005. http://www.ctie.monash.edu.au/hardgrave/

Batagelj, V.; Mrvar (2004). A Program for analysis and visualization of large networks. Ljubljana, Slovenia. http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/pajekman.htm>

Carrivick, J. L. Smith, M. W. Quincey, D. J (2016). Structure from Motion in the Geosciences. John Wiley & Sons. 1, 34. https://www.wiley.com/en-us/Structure+from+Motion+in+the+Geosciences-p-9781118895849

Cobo, M. J. López-Herrera, A. G. Herrera-Viedma, E. Herrera, F. (2012). SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Tecnology, 63, 8, 1609-1630. https://doi.org/10.1002/asi.22688

Colomina, I. Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79-97. https://doi.org/10.1016/j.isprsjprs.2014.02.013

De Brum, C. B. Mauricio, M. Da Silva, R. O. Bastos, Y. (2019). In: Uso dos drones nos procedimentos civis e criminais no Brasil: considerações sob a ótica dos direitos fundamentais. Prudkin G, Breuning, FM (Org). – Santa Maria, RS: FACOS-UFMS. https://repositorio.ufsm.br/bitstream/handle/1/18774/DRONES%20e%20CIENCIA.pdf?sequence=1&isAllowed=y

DJI. Phantom User Manual, v1.1; DJI: Shenzhen, China, 2013. <https://www.dji.com/br/downloads/products/phantom>

Estatuto da Cidade (2001). Lei n. 10.257, de 10 de julho de 2001. Regulamenta os artigos, 182. http://www.planalto.gov.br/ccivil_03/leis/leis_2001/l10257.htm

FLO-2D Software FLO-2D Reference Manual; FLO-2D Software, Inc. P.O. AZ, USA, 2009. https://flo-2d.com/.

Gu, N. Feng, Z. K. Luo, X. (2007). Digital elevation model based on aerial UAV image. Beijing Linye Daxue Xuebao/Journal of Beijing Forestry University, 29, 152-155. http://caod.oriprobe.com/articles/25904714/Digital_elevation_model_based_on_aerial_UAV_image_.htm

Guerra, F. C. Zacharias, A. A. (2016). Mapeamento das áreas de riscos hidrológicos e as políticas públicas de sustentabilidade: o caso de Ourinhos/SP. Revista Nacional de Gerenciamento de Cidades, 4(26), 223 - 243. https://doi.org/10.17271/2318847242620161345

Heimhuber, V. Hannemann, J. C. Rieger, W. (2015). Flood risk management in remote and impoverished areas - A case study of Onaville, Haiti. Water. 7(7), 3832-3860. https://doi.org/10.3390/w7073832

Leitão, J. P. Moy de Vitry, M. Scheidegger, A. Rieckermann, J. (2016). Assessing the quality of digital elevation models obtained from mini unmanned aerial vehicles for overland flow modelling in urban areas. Hydrology and Earth System Sciences, 20(4), 1637-1653. https://doi.org/10.5194/hess-20-1637-2016

Luppichini, M. Favalli, M. Isola, I. Nannipieri, L. Giannecchini, R. Bini, M. (2019). Influence of topographic resolution and accuracy on hydraulic channel flow simulations: case study of the Versilia River (Italy). Remote Sensing, 11(13), 1630. https://doi.org/10.3390/rs11131630

Mazzoleni, M.; Paron, P.; Reali, A.; Juizo, D.; Manane, J.; Brandimarte, L. Testing UAV-derived topography for hydraulic modelling in a tropical environment (2020), Natural Hazards, 103(1), 139-163. https://doi.org/10.1007/s11069-020-03963-4

Moreira, P. S. C. Guimarães, A. J. R. Tsunoda, D. F. (2020). Qual ferramenta bibliométrica escolher? Um estudo comparativo entre softwares. P2p e Inovação, 6, 140-158. https://doi.org/10.21721/p2p.2020v6n2.p140-158

Mourato, S. Fernandez, P. Pereira, L. Moreira, M. (2017). Improving a DSM obtained by unmanned aerial vehicles for flood modelling. In IOP Conference Series: Earth and Environmental Science, IOP Publishing, 95, 2, 022014. doi: 10.1088/1755-1315/95/2/022014

Muthusamy, M. Rivas Casado, M. Salmoral, G. Irvine, T. Leinster, P. (2019). A remote sensing based integrated approach to quantify the impact of fluvial and pluvial flooding in an urban catchment. Remote Sensing. 11(5), 577. https://doi.org/10.3390/rs11050577

Nex, F. Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied Geomatics. 6(1), 1-15. https://doi.org/10.1007/s12518-013-0120-x

Paranhos Filho, A. C. Mioto, C. L. Junior, J. M (2016). Geotecnologias em aplicações ambientais. Editora UFMS, 1, 6-15. https://editora.ufms.br/produto/geotecnologias-em-aplicacoes-ambientais/

Paranhos Filho, A. C. Mioto, C. L. Pessi, D. D. Gamarra, R. M.; Da Silva, N. M.; Ribeiro, V. O.; Chaves, J. R. (2020). Geotecnologias para aplicações ambientais. Ed. Uniedusul, 1, 224-235. https://www.uniedusul.com.br/wp-content/uploads/2021/01/GEOTECNOLOGIAS-PARA-APLICACOES-AMBIENTAIS.pdf

QGIS API. 2020. QGIS API Documentation. https://qgis.org/api/3.4/

Redweik, P. (2007). Fotogrametria aérea. Faculdade de Ciências da Universidade de Lisboa, Lisboa, 1, 1-36. <https://www.researchgate.net/profile/Paula-Redweik/publication/268329721_FOTOGRAMETRIA_AEREA/links/564da1e608ae1ef9296aba8d/FOTOGRAMETRIA-AEREA.pdf>

Rio Grande do Sul, BRASIL (2016). Ministério Público do Estado do Rio Grande do Sul. Promotoria de Justiça. Áreas de risco ocupações em planícies de inundação. 22. https://www.mprs.mp.br/noticias/ambiente/41036/

Sahid, N. A. W. Hadi, M. P. (2018). An investigation of Digital Elevation Model (DEM) structure influence on flood modelling. In IOP Conference Series: Earth and Environmental Science, IOP Publishing, 148, 1, 012001. doi: 10.1088/1755-1315/148/1/012001

USACE. User’s Manual HEC-GeoHAS 9.3; Hydrologic Engineering Center-Geospatial Hydrologic Modelling System; US Army Corps of Engineers: Washington, DC, USA, 2010. https://www.hec.usace.army.mil/software/hec-georas/downloads.aspx

USACE. User’s Manual HEC-GeoHMS 10.1; Hydrologic Engineering Center-Geospatial Hydrologic Modelling System; US Army Corps of Engineers: Washington, DC, USA, 2013. https://www.hec.usace.army.mil/software/hec-geohms/downloads.aspx

Valeriano, M. M. Rossetti, D. F. (2012). Topodata: Brazilian full coverage refinement of SRTM data. Applied Geography, Elsevier, 32, 300–309. https://doi.org/10.1016/j.apgeog.2011.05.004

Van Eck, N. J. Waltman, L. (2010). Software survey: VOSViewer, a computer program for bibliometric mapping. Scientometrics. 84, 523–538. https://doi.org/10.1007/s11192-009-0146-3

Wu, J. Zhou, G. Li, Q. (2006). Calibration of small and low-cost UAV video system for real-time planimetric mapping. In 2006 IEEE International Symposium on Geoscience and Remote Sensing, IEEE. doi: 10.1109/IGARSS.2006.535

Yalcin, E. M. R. A. H. (2018). Generation of high-resolution digital surface models for urban flood modelling using UAV imagery. WIT Trans Ecol Environ, 215, 357-366. doi: 10.2495/EID180321

Published

02/11/2021

How to Cite

RODRIGUES, A. G. S. .; GUIRRA, A. P. M. .; SILVEIRA, D. N. .; SILVEIRA, A. L. A. da .; CHAVES, J. R. .; VALLE JUNIOR, L. C. G. do .; PARANHOS FILHO, A. C. .; GAMARRA, R. M. . Social networks and bibliometrics on the use of UAVs in hydrological risk mapping in urban areas. Research, Society and Development, [S. l.], v. 10, n. 14, p. e319101422078, 2021. DOI: 10.33448/rsd-v10i14.22078. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/22078. Acesso em: 19 apr. 2024.

Issue

Section

Review Article