Adsorption of reactive yellow BF-3R dye by CTABr modified zeolite NaY

Authors

DOI:

https://doi.org/10.33448/rsd-v10i14.22147

Keywords:

Zeolite Y; Adsorption; Yellow dye BF-3R; Surfactant modified zeolite; Dyes removal.

Abstract

Textile industries generate effluents composed of organic salts and complexes from dyes not fixed on fabrics, or not degraded by the inefficiency of conventional treatment processes, which represents a high potential for environmental impact due to inadequate disposal of the generated effluent. Zeolites are porous materials that have a three-dimensional structure containing tetrahedrals of AlO4 e SiO4 which can be modified to improve its properties. The adsorption process using zeolites as adsorbents can be considered an excellent economic physical treatment to solve or minimize such a problem. This work presents an experimental study focusing on the preparation and characterization of zeolite NaY and modified with organic surfactant cetyltrimethylammonium bromide (CTABr) intended to be used as adsorbent in the process of removing yellow dye BF-3R in dye-water system batch system. The samples were characterized by X-ray diffraction (XRD), Infrared spectroscopy (IR) and thermogravimetry (TG). The effect of process parameter such as pH was studied. Results revealed that even though the modified cetyltrimethylammonium bromide organic surfactant (CTABr) did not cause alterations on the zeolite NaY structure. The IR results revealed that CTABr was successfully incorporated to zeolite NaY structure. The best conditions were established with respect to pH to saturate the available sites located on the zeolite NaY and NaY_CTABr surface. The maximum adsorption capacities were 3.35 and mg/g for dye 5.35 using as-synthesized zeolite NaY and CTABr modified zeolite NaY. Modified zeolites are excellent adsorbents for removing reactive dyes from industrial wastewater.

References

Ahmad, M. A, & Rahman, N. K. (2011). Equilibrium, kinetics and thermodynamic of Remazol Brilliant Orange 3R dye adsorption on coffee husk-based activated carbon. Chemical Engineering Journal, 170, 154-161. https://doi.org/10.1016/j.cej.2011.03.045

Azzopardi, E. A., Owens, S. E., Murison, M., Rees, D., Sawhney, M. A., Francis, L. W., Teixeira. R. S. R., Clement. M., Conlan, R. S., & Whitaker, I. S. (2017).

Chromophores in operative surgery: Current practice and rationalized development. Journal of Controlled Release, 249, 123-130. https://doi.org/10.1016/j.jconrel.2016.12.044

Barbosa, A. S., Monteiro, G. S., Rocha, L. N., Lima, E. G.; & Rodrigues, M. G. F. (2019). Remoção do Corante Reativo vermelho por adsorção utilizando argilas branca e vermelha. Revista Gestão & Sustentabilidade Ambiental, 8, 539-661.

Barbosa, A. S., Rocha, L. N., Barbosa, A. S., Monteiro, G. S., & Rodrigues, M. G. F. (2015). Argila vermelha utilizada como adsorvente na remoção de corantes reativos. In 59º Congresso Brasileiro de Cerâmica.

Barbosa, T. L. A., Rodrigues, D. P. A., & Rodrigues, M. G. F. (2019). Síntese da estrutura metalorgânica ZIF-67 e aplicação na remoção do corante Rodamina B. In XXI Congreso Argentino de Catálisis e X Congreso de Catálisis del Mercosur.

Barbosa, T. L. A., Rodrigues,, D. P. A., & Rodrigues, M. G. F. (2019). Síntese da estrutura metalorgânica ZIF-67 e aplicação na remoção do corante rodamina B. In XXI Congreso Argentino de Catálisis.

Benkhaya, S., Rabet, S. M., & Harfi, A. E. (2020). A review on classifications, recent synthesis, and applications of textile dyes. Inorganic Chemistry Communications, 115, 107891. https://doi.org/10.1016/j.inoche.2020.107891

Cao, J., Wu, Y., Jin, Y., Yilihan, P., Huang, W. (2014). Response surface methodology approach for optimization of the removal of chromium (VI) by NH2-MCM-41. Journal of the Taiwan Institute of Chemical Engineers, 45, 860-868. https://doi.org/10.1016/j.inoche.2020.107891

Cooney, D. O. (1999). Adsorption Design for Wastewater Treatment. Florida: CRC Press.

Dabbawala, A. A., Tzitzios, V., Sunny, K., Polychronopoulou, K., Basina, G., Ismail, I., Pillai, V., Tharalekshmy, A., Stephen, S., & Alhassan, S. M. (2018). Synthesis of nanoporous zeolite-Y and zeolite-Y/GO nanocomposite using polyelectrolyte functionalized graphene oxide. Surface and Coatings Technology, 350, 369-375. https://doi.org/10.1016/j.surfcoat.2018.07.036

Hashemi, M. S. H., Eslami, F., & Karimzadeh. R. (2019). Organic contaminants removal from industrial wastewater by CTAB treated synthetic zeolite Y. Journal of Environmental Management, 233, 785-792. https://doi.org/10.1016/j.jenvman.2018.10.003

Hayes, K.F., & Leckie J. (1987). Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces. Journal of Colloid and Interface Science, 115, 564-572. https://doi.org/10.1016/0021-9797(87)90078-6

Huo, Z., Xu. X., Lv, Z., Song, J., He, M., Li, Z., Wang, Q., Yan, L., Li, Y. (2013). Thermal study of NaP zeolite with diferent morphologies. Journal of Thermal Analysis and Calorimetry, 111, 365-369. http://dx.doi.org/10.1007/s10973-012-2301-y

Johnson, E.B.G, & Arshad, S.E. (2014). Hydrothermally synthesized zeolites based on kaolinite: a review. Applied Clay Science, 97–98, 215–221. https://doi.org/10.1016/j.clay.2014.06.005

Jose, M., Sriram, K., Reshma, R., Vidya, U. V., & Shukla, S. (2018). Synergistic persulfate activation as an efficient and cost-effective approach for removal of organic synthetic-dyes from aqueous solutions using magnetic Pd – Fe3O4-fly ash composite particles as catalyst. Journal of Environmental Chemical Engineering, 6, 3709-3717. https://doi.org/10.1016/j.jece.2016.12.027

Kabra, A.N. (2011). Differential fate of metabolism of a sulfonated azo dye Remazol Orange 3R by plants Aster amellus Linn., Glandularia pulchella (Sweet) Tronc. and their consortium. Journal of Hazardous Materials, 190, 424-431. https://doi.org/10.1016/j.jhazmat.2011.03.065

Khaleque, A, Alam, M. M., Hoque, M., Mondal, S., Haider, J. B., Xu, B., Johir, M. A.H., Karmakar, A. K., Zhou, J. L., Ahmed. M. B., & Moni, M. A. (2020). Zeolite synthesis from low-cost materials and environmental applications: A review. Environmental Advances. 2, 100019. https://doi.org/10.1016/j.envadv.2020.100019

Kulprathipanja, S. (2010). Zeolites in Industrial Separation and Catalysis. Germany: Wiley-VCH.

Laurent, A. D., Wathelet, V., Bouhy, M., Jacquemin, D., & Perpéte, E. (2010). Simulation de la perception des couleurs de colorants organiques. Techniques de L’ingénieur, 3-4, 6810.

Lima, L. A., Mota, M. F., Menezes, V. M. R., & Rodrigues, M. G. F. (2014). Síntese da peneira molecular MCM-41 e sua utilização como adsorvente na remoção do corante azul reativo BF-5G. In XX Congresso Brasileiro de Engenharia Química.

Lima, L. A., Paula, G. M., & Rodrigues, M. G. F. (2014). Síntese da peneira molecular SBA-15 e sua utilização como adsorvente na remoção de corantes. In XXIV Congresso Iberoamericando de Catálisis.

Lin, J., & Zhan, Y. (2012). Adsorption of humic acid from aqueous solution onto unmodified and surfactant-modified chitosan/zeolite composites. Chemical Engineering Journal, 200-202, 202-213. https://doi.org/10.1016/j.cej.2012.06.039

Liu, X., Yan, Z., Wang, H., & Luo, Y. (2003). In situ synthesis of NaY zeolite with coal-based kaolin. Journal of Natural Gas Chemistry, 12, 63 - 70.

Lo, B. T. W, Ye, L., & Tsang. S. C. E. (2018). The Contribution of Synchrotron X-Ray Powder Diffraction to Modern Zeolite Applications: A Mini-review and Prospects. Chemistry, 4, 1778-1808.

Lutz, W. (2014). Zeolite Y: synthesis, modification, and properties - a case revisited. Advances in Materials Science and Engineering, 13, 1 - 20.

Ma. T., Wu, Y., Liu, N., & Wu, Y. (2020). Hydrolyzed polyacrylamide modified diatomite waste as a novel adsorbent for organic dye removal: Adsorption performance and mechanism studies. Polyhedron, 175, 114227. https://doi.org/10.1016/j.poly.2019.114227

Mirzaei, N., Hadi, M., Gholami, M., Fard, R.F., & Aminabad, M.S. (2016). Sorption of acid dye by surfactant modificated natural zeolites. Journal of the Taiwan Institute of Chemical Engineers, 59, 186 - 94. http://dx.doi.org/10.1016%2Fj.jtice.2015.07.010

Ngulube, T., Gumbo, J. R., Masindi, V., & Maity, A. (2017). An update on synthetic dyes adsorption onto clay-based minerals: A state-of-art review. Journal of Environmental Management,191, 35-57. https://doi.org/10.1016/j.jenvman.2016.12.031

Nogueira, A. C., Barbosa, T. S. B., Barros, T. R. B., & Rodrigues, M. G. F. (2020). Caracterização e aplicação de argilas vermiculita e esmectita (verde lodo) na adsorção de corantes na indústria têxtil. In Pesquisas Multidisciplinares em Ciências Exatas (pp. 369-379). http//doi/10.47402/ed.ep.c202150825966

Nupearachchi, C.N., Mahatantila. K., & Vithanage, M. (2017). Application of graphene for decontamination of water; implications for sorptive removal. Groundwater for Sustainable Development, 5, 206 - 215. https://doi.org/10.1016/j.gsd.2017.06.006

Oliveira, L. A., Araújo, I. N., Cunha, R. S. S., Mota, J. D. & Rodrigues, M. G. F. (2020). Planejamento experimental da remoção de corante amarelo reativo

através de argila esmectita. In Processos Químicos e Biotecnológicos (pp. 104-115). http//doi/10.36229/978-65-5866-009-5.CAP.11

Oliveira, T.G. (2014). Adsorção de CO2 em peneiras moleculares micro e mesoporosas. Química Nova, 37, 610-614.

Paula, L. N. R., Paula, G. M., & Rodrigues, M. G. F. (2020). Adsorption of reactive blue BF-5G dye on MCM-41 synthesized from chocolate clay. Cerâmica, 66, 269-276. http://dx.doi.org/10.1590/0366-69132020663792862

Pukcothanung, Y., Siritanon, T., & Rangsriwatananon, K. (2018). The efficiency of zeolite Y and surfactant-modified zeolite Y for removal of 2,4-dichlorophenoxyacetic acid and 1,1′-dimethyl-4,4′-bipyridinium ion. Microporous and Mesoporous Materials, 258, 131-140. https://doi.org/10.1016/j.micromeso.2017.08.035

Radoor, S., Karayil, J., Jayakumar, A., Parameswaranpillai, J., & Siengchin, S. (2021). Efficient removal of methyl orange from aqueous solution using mesoporous ZSM-5 zeolite: Synthesis. kinetics. and isotherm studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 611, 125852.

https://doi.org/10.1016/j.colsurfa.2020.125852

Radoor, S., Karayil, J., Parameswaranpillai, J., Siengchin, T. (2020). Adsorption Study of Anionic Dye, Eriochrome Black T from Aqueous Medium Using Polyvinyl Alcohol/Starch/ZSM-5 Zeolite Membrane. Journal of Polymers, and the Environment, 28, 2631-2643. https://doi.org/10.1007/s10924-020-01812-w

Raharjo, Y., Ismail, A. F., Othman, M. H. D., Malek, N. A. N. N., & Santoso. D. (2019). Preparation and characterization of imprinted zeolite-Y for p-cresol removal in haemodialysis. Materials Science and Engineering: C, 103, 109722. https://doi.org/10.1016/j.msec.2019.05.007

Rocha, L. N., Barbosa, A. S., & Rodrigues, M. G. F. (2016). Ensaio de adsorção de dois corantes reativos utilizando argila vermelha. In XXI Congresso Brasileiro de Engenharia Química.

Rocha, L. N., Barbosa, A. S., & Rodrigues, M. G. F. (2016). Remoção do corante vermelho BF-4B em sistema descontínuo utilizando argilas esmectíticas. In XI Encontro Brasileiro sobre Adsorção.

Rocha, L. N., Barbosa, A. S., Monteiro, G. S., & Rodrigues, M. G. F. (2017). Estudo de adsorção de corantes reativos utilizando argila vermelha. In 61º Congresso Brasileiro de Cerâmica.

Rocha, L. N., Barbosa, A. S., Monteiro, G. S., & Rodrigues, M. G. F. (2017). Cinética de adsorção de corantes utilizando a argila Branca como adsorvente. In 19º Congresso Brasileiro de Catálise.

Rocha, L. N., Barbosa, A. S., Monteiro, G. S., Barbosa, A. S., & Rodrigues, M. G. F. (2015). Influência do pH na remoção de corantes reativos utilizando argilas como adsorventes. In 18º Congresso Brasileiro de Catálise.

Rodrigues, D. P. A., Barbosa, T. L. A., & Rodrigues, M. G. F. (2020). Zeolitic Imidazolate Framework-8 Nanoparticles for Rhodamine B Adsorption. Current Nanomaterials, 6, 1- 8. https://doi.org/10.2174/2468187310999201120091142

Rodrigues, D. P. A., Barbosa, T. L. A., & Rodrigues, M. G. F. (2020). Adsorção de Rodamina B em ZIF-8 e ZIF-67: Efeito nas estruturas. In Engenharia no Século XXI (pp. 16-29). http//doi/10.36229/978-65-86127-45-4.CAP.03

Ruthven, D. M. (1984). Principles of Adsorption and Adsorption Process. New York: John Wiley & Sons, 5, 7-18.

Salim, M.M., & Malek, N.A.N.N. (2016). Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite. Materials Science and Engineering: C, 59, 70–77. https://doi.org/10.1016/j.apsusc.2018.05.222

Silva, E. T. dos S., Rodrigues, D. P. A., Tomaz, P. F., Barbosa, T. L. A., & Rodrigues, M. G. F. (2019). Preparação de estrutura metalorgânica ZIF-8: Aplicação em adsorção de Rodamina B. In 63º Congresso Brasileiro de Cerâmica.

Silva, F. M. N., Barbosa, A. S., Cunha, R. S. S., & Rodrigues, M. G. F. (2020). Preparação e caracterização de membrana inorgânica com propriedades para remoção de corante amarelo reativo BF – 3R. In Processos Químicos e Biotecnológicos (pp. 93-103). http//doi/10.36229/978-65-5866-009-5.CAP.10

Silva, F. M. N., Silva, L. R. B., Silva, E. T. S., & Rodrigues, M. G. F. (2019). Síntese da zeólita mordenita e modificação com CTMABr. Aplicação na remoção do corante Rodamina B. In XXI Congreso Argentino de Catálisis.

Silva, F. N. M.; Barbosa, T. L. A.; D. P. A.; & Rodrigues, M. G. F. (2019). Síntese da zeólita SAPO-34 e aplicação na remoção do corante reativo amarelo BF-3R. In XXI Congreso Argentino de Catálisis.

Silva, L. R. B., Barbosa, T. L. A., Bezerra, J. U. L., & Rodrigues, M. G. F. (2020). Síntese da Zéolita ZSM-5 para ser utilizada como adsorvente na remoção do corante reativo BF-3R: influência do pH. In Processos Químicos e Biotecnológicos (pp. 66-78) http//doi/10.36229/978-65-86127-43-0.CAP.09

Silva, L. R. B., Barbosa, T. L. A., Bezerra, J. U. L., & Rodrigues, M. G. F. (2019). Zeólita ZSM-5 não modificada e modificada com surfactante CTMABr: aplicação na remoção do corante amarelo BF-3R. In 63º Congresso Brasileiro de Cerâmica.

Silva, L. R. B., Rodrigues, M. G. F., do Carmo. E. S., Barbosa. A. S., & Silva. E. T. (2019). Unmodified ZSM-5 zeolite with CTMABr surfactant: application to remove BF-3R yellow dye. In 63º Congresso Brasileiro de Cerâmica.

Sivalingam, S, & Sen, S. (2018). Optimization of synthesis parameters and characterization of coal fly ash derived microporous zeolite X, Applied Surface Science, 455, 903-910. https://doi.org/10.1016/j.apsusc.2018.05.222

Taufiqurrahmi, N., Mohamed, A. R., & Bhatia, S. (2011). Nanocrystalline zeolite Y: Synthesis and characterization. IOP Conference Series: Materials Science and Engineering, 17, 1-6.

Tomaz, P. F., Rodrigues, D. P. A.; Barbosa, T. L. A., & Rodrigues, M. G. F. (2019). Nova rota de síntese da estrutura metalorgânica ZIF e argila para serem utilizadas na remoção de corante rodamina B. In XXI Congreso Argentino de Catálisis.

Wanyonyi, W.C., Onyari, J.M., & Shiundu, P.M. (2014). Adsorption of Congo red dye from aqueous solutions using roots of eichhornia crassipes: kinetic and equilibrium studies. Energy Procedia, 50, 862 – 869. https://doi.org/10.1016/j.egypro.2014.06.105

Zou, Z., Shi, Z., & Deng, L. (2017). Highly efficient removal of Cu(II) from aqueous solution using a novel magnetic EDTA functionalized CoFe2O4. RSC Advances,7, 5195-5205.

Downloads

Published

03/11/2021

How to Cite

BARROS , T. R. B. .; BARBOSA , T. S. B. .; RODRIGUES, M. G. F. . Adsorption of reactive yellow BF-3R dye by CTABr modified zeolite NaY. Research, Society and Development, [S. l.], v. 10, n. 14, p. e323101422147, 2021. DOI: 10.33448/rsd-v10i14.22147. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/22147. Acesso em: 16 apr. 2024.

Issue

Section

Engineerings