The effect of exopolysaccharides obtained from lactic acid bacteria as a prebiotic: a systematic review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i15.22547

Keywords:

Lactic Acid Bacteria; Exopolysaccharide; Prebiotic.

Abstract

Exopolysaccharides from lactic acid bacteria are biopolymers known for their structural diversity and because of this they have several beneficial effects on human health, and can act as immunomodulators, antioxidants, antitumors etc. It is known that exopolysaccharides also help in the balance of the intestinal microbiota, but there is still no evidence that it is due to a prebiotic effect. Therefore, this study aimed to evaluate the performance of exopolysaccharides produced by lactic acid bacteria as prebiotics through a systematic literature review. The review was carried out adopting the PRISMA strategy. Studies carried out between 2011 and 2020 were collected, using 4 different databases. The key words used were: “exopolysaccharides”, “prebiotics”, “prebiotic potential”, “prebiotic effects”, “lactic acid bacteria” and “probiotics”. A total of 7 references were analyzed regarding the prebiotic effects of EPS in general, and of these few, randomized and controlled clinical studies were carried out. Although the EPS studied have presented typical characteristics of a prebiotic, there is still a need for future studies with a better experimental design to verify these effects with greater precision, as well as to determine the appropriate duration and dosages.

References

Adesulu-Dahunsi, A. T., Jeyaram, K., Sanni, A. I., & Banwo, K. (2018). Production of exopolysaccharide by strains of Lactobacillus plantarum YO175 and OF101 isolated from traditional fermented cereal beverage. PeerJ INC. 6, e5326. doi: 10.7717/peerj.5326

Arora, K., Green, M., & Prakash, S. (2020). The Microbiome and Alzheimer’s Disease: Potential and Limitations of Prebiotic, Synbiotic, and Probiotic Formulations. Front. Bioeng. Biotechnol. 8:537847. doi: 10.3389/fbioe.2020.537847

Caggianiello, G., Kleerebezem, M., & Spano, G. (2016). Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Applied Microbiology and Biotechnology. 100(9), 3877–3886. doi:10.1007/s00253-016-7471-2

Daba, G. M., Elnahas, M. O., & Elkhateeb, W. A. (2021). Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food, pharmaceutical, and medical applications. International Journal of Biological Macromolecules. 173, 79–89. doi:10.1016/j.ijbiomac.2021.01.110

Das, D., Baruah, R., & Goyal, A. (2014). A food additive with prebiotic properties of an α-d-glucan from Lactobacillus plantarum DM5. International Journal of Biological Macromolecules. 69, 20–26. doi:10.1016/j.ijbiomac.2014.05.029

Gao, Z., Fang, Y., Cao, Y., Liao, H., Nishinari, K., & Phillips, G. O. (2017). Hydrocolloid-food component interactions. Food Hydrocolloids. 68, 149–156. doi 10.1016/j.foodhyd.2016.08.042

Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology. 14, 491-502. doi:10.1038/nrgastro.2017.75

Grosu-Tudor, S. S., Zamfir, M., Meulen, R. V. D., Falony, G., & Vuyst, L. D. (2013). Prebiotic potential of some exopolysaccharides produced by lactic acid bacteria. Romanian Biotechnological Letters. 18 (5), 8666-8676. Retrieved from

https://www.researchgate.net/publication/286068292_Prebiotic_potential_of_some_exopolysaccharides_produced_by_lactic_acid_bacteria

Guarner, F., Sanders, M. E., Eliakim, R., Fedorak, R., Gangl, A., Garisch, J., Kaufmann, P., Karakan, T., Khan, A. G., Kim, N., Paula, J. A. de., Ramakrihna, B., Shanahan, F., Szajewska, H., Thomson, A., & Mair, A. L. (2017). Probiotics and prebiotics. World gastroenterology organization. Retrieved set.2021, from: https://www.worldgastroenterology.org/UserFiles/file/guidelines/probiotics-and-prebiotics-english-2017.pdf

Hongpattarakere, T., Cherntong, N., Wichienchot, S., Kolida, S., & Rastall, R. A. (2012). In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohydrate Polymers, 87(1), 846–852. doi:10.1016/j.carbpol.2011.08.085

Hussein, M. M., Ghaly, M. F., OSMAN, M. Y., Shalaby, A. S. G., & Helal, M. M. I. (2015). Production and prebiotic activity of exopolysaccharides derived from some probiotics. Egyptian Pharmaceutical Journal. 14(1), 1. doi:10.4103/1687-4315.154687

Jindal, N. & Khattar, S. J. (2018). Microbial Polysaccharides in Food Industry. Biopolymers for Food Design, 95-123. doi: 10.1016 / b978-0-12-811449-0.00004-9

Liu, C., Kolida, S., Charalampopoulos, D., & Rastall, R. A. (2020). An evaluation of the prebiotic potential of microbial levans from Erwinia sp. 10119. Journal of Functional Foods. 64, 103668. doi:10.1016/j.jff.2019.103668

Lybch, K. M, Coffey, A., & Arendt, E. K. (2018). Exopolysaccharide producing lactic acid bacteria: Their technofunctional role and potential application in gluten-free bread products. Food Research International. 110, 52-61. Doi: 10.1016/j.foodres.2017.03.012

Maldonado-Contreras, A., Noel, S. E, Ward, D. V, Velez, M., & Mangano, K. M. (2020). Associations between Diet, the Gut Microbiome, and Short-Chain Fatty Acid Production among Older Caribbean Latino Adults. Journal of the academy of nutrition and dietetics. 112(120), 2047-2060. doi: 10.1016 / j.jand.2020.04.018

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS medicine. 62 (10), 1006–1012. doi: 10.1016 / j.jclinepi.2009.06.005

Renschler, M. A., Wyatt, A., Anene, N., Robinson-Hill, R., Pickerill, E. S., Fox, N. E., Griffith, J. A., & McKillip, J. L. (2020). Using nitrous acid-modified de Man, Rogosa, and Sharpe medium to selectively isolate and culture lactic acid bacteria from dairy foods. Journal of Dairy Science. 103(2). doi:10.3168/jds.2019-17041

Tang, W., Zhou, J., Xu, Q., Dong, M., Fan, X., Rui, X., Zhang, Q., Chen, X., Jiang, M., Wu, J., & Li, W. (2020¹). In vitro digestion and fermentation of released exopolysaccharides (r-EPS) from Lactobacillus delbrueckii ssp. bulgaricus SRFM-1. Carbohydrate Polymers. 230, 115593. doi:10.1016/j.carbpol.2019.115593

Tang, W., Han, S., Zhou, J., Xu, Q., Dong, M., Fan, X., Rui, X., Zhang, Q., Chen, X., Jiang, M., Wu, J., & Li, W. (2020²). Selective fermentation of Lactobacillus delbrueckii ssp. Bulgaricus SRFM-1 derived exopolysaccharide by Lactobacillus and Streptococcus strains revealed prebiotic properties. Journal of Functional Foods. 69, 103952. doi:10.1016/j.jff.2020.103952

Zhou, Q., Feng, F., Yang, Y., Zhao, F., Du, R., Zhou, Z., & Han, Y. (2018). Characterization of a dextran produced by Leuconostoc pseudomesenteroides XG5 from homemade wine. International Journal of Biological Macromolecules, 107, 2234–2241. doi:10.1016/j.ijbiomac.2017.10.098

Published

24/11/2021

How to Cite

MONTEIRO, R. G.; SILVA, E. C. da; MARTINS, A. L. C.; PORTO, A. L. F.; SOARES, M. T. C. V. The effect of exopolysaccharides obtained from lactic acid bacteria as a prebiotic: a systematic review. Research, Society and Development, [S. l.], v. 10, n. 15, p. e194101522547, 2021. DOI: 10.33448/rsd-v10i15.22547. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/22547. Acesso em: 16 apr. 2024.

Issue

Section

Review Article