Non-linear analysis of reinforced concrete pile caps as a foundation of onshore wind turbines considering the lateral friction between piles and the soil

Authors

DOI:

https://doi.org/10.33448/rsd-v11i2.23146

Keywords:

Structural Analysis; Wind Turbine Foundation; Numerical Modeling; FEM.

Abstract

In the search for alternative sources to meet the growing demand for energy, wind production has been highlighted due to the great potential for its use in Brazil. Given the magnitude of the foundations of wind turbines, understanding their structural behavior is essential for designing optimized solutions that reduce costs and facilitate the implementation of this technology on a large scale. From this perspective, this article seeks to deepen the studies on the structural behavior of foundations for onshore wind turbines, represented by reinforced concrete pile caps. Computational models were developed using the Finite Element Method (FEM) with the aid of the Ansys Workbench R20 software, considering the contribution of the lateral friction of the pile shaft in the conduction of loads to the ground, as well as the settlement of the piles, through modeling non-linear numerical. The reinforcements of a wind tower foundation were designed and two different mesh organizations were proposed: circular (CR) and orthogonal (OR). From the simulations carried out, the distribution of reactions in the piles and the vertical displacements of the blocks were compared, in different types of soil. It was observed that the reinforced models presented a behavior close to that of rigid blocks, with a tendency towards uniformity of reactions and vertical displacements. At the end, the concrete cracking zones were determined and the tensions in the reinforcement were verified. The results showed that the highest stresses occurred in the models with circular reinforcement (CR), on average 2.06% higher than the OR models. This tendency was associated with the fact that the OR models have proved to be more rigid than the CR models which, being more deformable, impose greater stresses on the reinforcement when flexed by the moment of great magnitude that acts on the foundation.

References

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 6118: Projeto de estruturas de concreto - procedimento, Rio de Janeiro, 2014.

Agra Neto, J., Queiroz, F. C. B. P., Queiroz J. V., Lima; N. C., Silva, C. L. (2020). Evolução e perspectivas do setor eólico no Brasil: análise dos principais estados produtores. Revista em Agronegócio e Meio Ambiente, 13 (4), 1409-1432.

Ansys (2011). ANSYS Mechanical APDL Element Reference. Canonsburg: ANSYS Inc.

Ansys (2013a). ANSYS Mechanical APDL Advanced Analysis Guide. Canonsburg: ANSYS Inc.

Ansys (2013b). ANSYS Mechanical APDL Structural Analysis Guide. Canonsburg: ANSYS Inc.

Ansys (2013c). ANSYS Mechanical APDL Theory Reference. Canonsburg: ANSYS Inc.

Araújo, J. M. (2010). Curso de Concreto Armado (2a. ed.). Rio Grande: Dunas.

Araújo, K. Y. M. (2018). Análise do comportamento estrutural de blocos de concreto armado sobre estacas como fundação para aerogerador onshore. (Dissertação de Mestrado). Universidade Federal do Rio Grande do Norte, Natal, 2018.

Carvalho, R. C., Figueiredo Filho, J. R. (2013). Cálculo e detalhamento de estruturas usuais de concreto armado (2a. ed.). São Paulo: Pini.

Chastre, C., Lúcio, V. (2014). Evolução histórica, desenvolvimento atual e potencial futuro das torres de concreto pré-moldado para suporte de aerogeradores. Concreto & Construções, XLII (75), 24-34.

Décourt, L. (1996). Análise e projeto de fundações profundas. In: HACHICH, A. et al. (Eds.). Fundação: teoria e prática. São Paulo, SP: Pini.

International Energy Agency. (2021). Global Energy Review 2021. Recuperado de https://www.iea.org/reports/global-energy-review-2021.

Koerich, M. M. (2019). Novo critério para o dimensionamento de blocos de fundação com pilares associados. Recuperado de https://next.altoqi.com.br/destaque/novo-criterio-para-o-dimensionamento-de-blocos-de-fundacao-com-pilares-associados/.

Leonhardt, F., Mönnig, E. (1978). Construções de Concreto: Princípios básicos de estruturas de concreto armado. Rio de Janeiro: Interciência.

Mendizabal, R. L. (2014). Realizações do concreto no setor eólico. Revista Concreto & Construções, XLII (75), 42-48.

Milititsky, J. (2014). Desafios na solução de fundações de aerogeradores. Revista Concreto & Construções, XLII (75), 49-61.

Nakamura, J. (2020). Resistência e durabilidade pautam a construção de torres eólicas. Recuperado de https://www.aecweb.com.br/revista/materias/resistencia-e-durabilidade-pautam-a-construcao-de-torres-eolicas/20458. Acesso em: 5 set 2021.

Puel, A. (2016). Base de aerogeradores: Comparativo de dimensionamento modelo mef e modelo biela/tirante. Anais do IX Congresso Brasileiro de Pontes e Estruturas, Rio de Janeiro.

Schiel, F. (1957). Estática das construções. São Carlos: Escola de Engenharia de São Carlos.

Souza, R. A. (2004). Concreto estrutural: análise e dimensionamento de elementos com descontinuidades. (Tese de Doutorado). Universidade de São Paulo, São Paulo.

Published

16/01/2022

How to Cite

DANTAS, D. L.; MACIEL, D. N.; NASCIMENTO NETO, J. A. do; ARAÚJO, K. Y. M. .; BARROS, R. Non-linear analysis of reinforced concrete pile caps as a foundation of onshore wind turbines considering the lateral friction between piles and the soil. Research, Society and Development, [S. l.], v. 11, n. 2, p. e0711223146, 2022. DOI: 10.33448/rsd-v11i2.23146. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/23146. Acesso em: 18 apr. 2024.

Issue

Section

Engineerings