Energetic and exergetic analysis of compression ignition with diesel and biodiesel

Authors

DOI:

https://doi.org/10.33448/rsd-v10i16.23471

Keywords:

Thermodynamics; Diesel cycle; Exergy; Energy.

Abstract

The economic and environmental impacts related with fossil fuels dependency have encouraged the source of renewable energy sources. In remotes areas is common to use the diesel-generators for electric power generation. So, the biodiesel proves to be a great alternative for the electric generators. In this study was realized the energy and exergetic analysis of an engine-generator group diesel cycle subject to 5 alternating charges operating with 5 mixtures of fuel at different percentages between diesel and canola biodiesel. It was realized 25 essays in the engine-generator group to establish the specific fuel consumption, exhaust gas temperature, fuel energy, thermal efficiency, exhaust gas energy, heat transfer losses, fuel exergies, exergetic efficiency, exhaust gas exergy, destroyed exergy and the exergy of the heat transfer losses. It was found by increases in charge the specific fuel consumption lowers and the pure diesel showed the lowest consumption. At 2000 W and 2500 W the pure biodiesel has the best thermal efficiency. The pure biodiesel at 2000 W and 2500 W has the best exergetic efficiency and the blends with the biggest biodiesel percent showed the lowest exergy destruction.

References

Agência Nacional de Petróleo, Gás Natural e Bicombustíveis (2020). Dados estatísticos. http://www.anp.gov.br/dados-estatisticos

Aghbashlo M., Tabatabaei M., Mohammadi P., Pourvosoughi N., Nikbakht A. M. & Goli S. A. H. (2015). Improving exergetic and sustainability parameters of a DI diesel engine using polymer waste dissolved in biodiesel as a novel diesel additive. Energy Conversion and Management 105: 328–337. https://doi.org/10.1016/j.enconman.2015.07.075

Associação Brasileira de Normas Técnicas (2014). NBR 10441: Produtos de petróleo – Líquidos transparentes e opacos - Determinação da viscosidade cinemática e cálculo da viscosidade dinâmica.

Associação Brasileira de Normas Técnicas (2013). NBR 14065: Destilados de petróleo e óleos viscosos – Determinação da massa específica e da densidade relativa pelo densímetro digital.

Bergthorson J. M. & Thomson, M. J (2015). A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renewable and Sustainable Energy Reviews 42: 1393-1417. https://doi.org/10.1016/j.rser.2014.10.034

Brennan L. & Owende P. (2010). Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews 14 (2): 557-577. https://doi.org/10.1016/j.rser.2009.10.009

Buyukkaya E., Soyhan H. S. & Gokalp B. (2014). Effects of rapeseed oil addition to a diesel fuel on thermodynamic efficiencies. International Journal of Exergy 14 (1): 101-124. https://doi.org/10.1504/IJEX.2014.059515

Canakci M. & Hosoz M. (2006). Energy and exergy analyses of a diesel engine fuelled with various biodiesels. Energy Sources, Part B 1: 379–394. https://doi.org/10.1080/15567240500400796

Chuah L. F., Bokhari A., Yusup S., Klemes J. J., Abdullah B. & Akbar M. M. (2016). Optimisation and Kinetic Studies of Acid Esterification of High Free Fatty Acid Rubber Seed Oil. Arabian Journal for Science and Engineering, 41 (7): 2515–2526. https://doi.org/10.1007/s13369-015-2014-1

Chuah L. F., Klemes J. J., Yusup S., Bokhari A. & Akbar M. M. (2017). A review of cleaner intensification technologies in biodiesel production. Journal of Cleaner Production, 146: 181–193. https://doi.org/10.1016/j.jclepro.2016.05.017

Gashaw A. & Teshita A. (2014). Production of biodiesel from waste cooking oil and factors affecting its formation: A review. International Journal of Renewable and Sustainable Energy, 3: 92–98.

Jannatkhah J., Najafi B. & Ghaebi H. (2020). Energy and exergy analysis of combined ORC-ERC system for biodiesel-fed diesel engine waste heat recovery. Energy Conversion and Management, 209 (112658): 1-15. doi.org/10.1016/j.enconman.2020.112658

Kanoglu M., Isik S. K. & Abusoglu A. (2005). Performance characteristics of a diesel engine power plant. Energy Conversion and Management, 46: 1692-1702. doi.org/10.1016/j.enconman.2004.10.005

Karthickeyan V. (2019). Effect of combustion chamber bowl geometry modification on engine performance, combustion and emission characteristics of biodiesel fuelled diesel engine with its energy and exergy analysis. Energy, 176: 830-852. doi.org/10.1016/j.energy.2019.04.012

Karthikeyan A. & Jayaprabakar J. (2017). Energy and exergy analysis of compression ignition engine fuelled with rice bran biodiesel blends. International Journal of Ambient Energy, 1-7. doi.org/10.1080/01430750.2017.1399459

Knothe G., Razon L. F. (2017). Biodiesel fuels. Progress in Energy and Combustion Science, 58: 36–59. doi.org/10.1016/j.pecs.2016.08.001

Kotas T. J. (1985). The exergy method of thermal plant analysis. Elsevier.

López I., Quintana C. E., Ruiz J. J., Cruz-Peragón F. & Dorado M. P. (2014). Effect of the use of olive-pomace oil biodiesel/diesel fuel blends in a compression ignition engine: Preliminary exergy analysis. Energy Conversion and Management, 85: 85:227–233. doi.org/10.1016/j.enconm+an.2014.05.084

Meira M., Santana P. M. B., Silva D. S., Catarino F. B. S., Borges L. F. J. & Moreira L. B. (2016). Aditivos melhoradores da estabilidade oxidativa e corrosividade do biodiesel e da lubricidade da suas misturas com diesel. Revista Educação, Tecnologia e Cultura-ETC, 14 (14): 1-9. https://publicacoes.ifba.edu.br/index.php/etc/article/view/20

Moran M. S. & Shapiro H. N. (2018). Fundamentals of Engineering Thermodynamics. Editora LTC.

Oliveira I. M. F. (2018). Análise experimental energética e exergética da combustão de um grupo gerador usando diesel e mistura biodiesel de soja. Trabalho de Conclusão de Curso, Universidade Federal da Grande Dourados.

Ouanji F., Khachani M., Boualag M., Kacimi M. & Ziyad M. (2016). Large-scale biodiesel production from Moroccan used frying oil. International Journal of Hydrogen Energy, 41 (45): 21022–21029. doi.org/10.1016/j.ijhydene.2016.05.236

Patel R. L. & Sankhavara C. D. (2017). Biodiesel production from Karanja oil and its use in diesel engine. A review. Renewable and Sustainable Energy Reviews, 71: 464-474. doi.org/10.1016/j.rser.2016.12.075

Szargut J., Morris D. & Steward F. (1988) Exergy analysis of thermal chemical and metallurgical processes. United States, Berlin:Springer Verlag. 332p.

Turns S. R. (2013). Introdução à Combustão: Conceitos e Aplicações. AMGH Editora.

Sanli B. G. & Uludamar E. (2019). Energy and exergy analysis of a diesel engine fuelled with diesel and biodiesel fuels at various engine speeds. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 42 (11): 1299-1313. doi.org/10.1080/15567036.2019.1635229

Yamin J. A., Sheet E. A. E. & Hdaib I. (2018). Exergy analysis of biodiesel fueled direct injection CI engines. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40 (11): 1351–1358. doi.org/10.1080/15567036.2018.1476618

Published

09/12/2021

How to Cite

POSSA, D. C.; SOUZA, S. N. M. de; ZANELLA JÚNIOR, E. A.; SILVA, E. A. da .; POSSA, D. C.; NOGUEIRA, C. E. C. Energetic and exergetic analysis of compression ignition with diesel and biodiesel. Research, Society and Development, [S. l.], v. 10, n. 16, p. e145101623471, 2021. DOI: 10.33448/rsd-v10i16.23471. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/23471. Acesso em: 24 apr. 2024.

Issue

Section

Engineerings