Potential utilization of glycerol as crosslinker in starch films for application in Regenerative Dentistry

Authors

DOI:

https://doi.org/10.33448/rsd-v10i16.23640

Keywords:

Crosslinking; Glycerol; Guided tissue regeneration; Starch.

Abstract

Periodontal disease results in damage to dental insertion apparatus. Regenerative procedures are proposed to replace lost structures in the context of guided tissue regeneration (GTR), guided bone regeneration (GBR) techniques and frequently associate bone substitutes with physical barriers aiming at greater longevity and improvement of aesthetic pattern. This study evaluates the possibility of using glycerol as a starch films modifying agent, acting as a cross-linking agent, without compromising its plasticizing effect. Biodegradable cassava starch films were prepared incorporating glycerol at concentrations of 0, 15, 20, 30 and 40% aiming application at dental regenerative procedures. The characterization of films by microscopy (SEM), thermal analysis (DSC), spectroscopic (UV / Vis., FTIR, XRD), mechanical (Traction), and analysis of protein swelling, degradation and diffusion and physiological temperature) showed that the incorporation of glycerol in up to 20% attributed to the films a plasticizer character and in higher concentrations, conferred a greater interaction of glycerol (crosslinking) with the starch chains and a degradation time that allows the physical barrier in RTG and ROG. The films presented mechanical resistance, malleability and permissiveness to protein diffusion in the in vitro assays, which meet the current attributes that guide the use of these resources in biomaterials.

References

Aggarwal, P., & Dollimore, D. (1998). A thermal analysis investigation of partially hydrolyzed starch. Thermochimica Acta, 319(1-2), 17-25.

Andrade Silva, S., de Souza Laranjeira, A. C., Velozo, C., Montenegro, L. D. A. S., Bernardo, B. B. B., da Silva Santos, M. B., & de Albuquerque, D. S. (2021). Regeneração após cirurgia paraendodôntica em dente com extensa fenestração óssea–Relato de caso com acompanhamento de 3 anos. Research, Society and Development, 10(4), e22210413983-e22210413983.

Becker, W., Becker, B. E., Caffesse, R., Kerry, G., Ochsenbein, C., Morrison, E., & Prichard, J. (2001). A longitudinal study comparing scaling, osseous surgery, and modified Widman procedures: results after 5 years. Journal of periodontology, 72(12), 1675-1684.

Böstman, O. M. (1992). Intense granulomatous inflammatory lesions associated with absorbable internal fixation devices made of polyglycolide in ankle fractures. Clinical orthopaedics and related research, (278), 193-199.

Boyne, P. J. (1964). Regeneration of alveolar bone beneath cellulose acetate filter implants. J Dent Res, 43, 827.

Boyne, P. J. (1969). Restoration of osseous defects in maxillofacial casualties. The Journal of the American Dental Association, 78(4), 767-776.

Chang, Y. P., Abd Karim, A., & Seow, C. C. (2006). Interactive plasticizing–antiplasticizing effects of water and glycerol on the tensile properties of tapioca starch films. Food Hydrocolloids, 20(1), 1-8.

Chen, Y. T., Wang, H. L., Lopatin, D. E., O'Neal, R., & MacNeil, R. L. (1997). Bacterial adherence to guided tissue regeneration barrier membranes exposed to the oral environment. Journal of periodontology, 68(2), 172-179.

Cruz, J. C., Koester, D. L., Deon, V. G., Biduski, B., de Amorin, S. G., Quast, L. B., & Pinto, V. Z. (2020). Bandejas expandidas de amido de batata reforçadas com bagaço de malte. Research, Society and Development, 9(9), e875997630-e875997630.

Doulabi, A. H., Mirzadeh, H., Imani, M., & Samadi, N. (2013). Chitosan/polyethylene glycol fumarate blend film: Physical and antibacterial properties. Carbohydrate polymers, 92(1), 48-56.

Gerzson, A. S., Ribeiro Júnior, P. D., Matsumoto, M. A., Duarte, M. A. H., & Weckwerth, P. H. (2016). Barrier membranes for GBR: characteristics and indication. J Clin Dent Res, 13, 120-125.

Gontijo de Melo, P., Fornazier Borges, M., Afonso Ferreira, J., Vicente Barbosa Silva, M., & Ruggiero, R. (2018). Bio-based cellulose acetate films reinforced with lignin and glycerol. International journal of molecular sciences, 19(4), 1143.

Gottlow, J., Nyman, S., Lindhe, J., Karring, T., & Wennström, J. (1986). New attachment formation in the human periodontium by guided tissue regeneration Case reports. Journal of clinical periodontology, 13(6), 604-616. Hollinger, J., & Chaudhari, A. (1992). Bone regeneration materials for the mandibular and craniofacial complex. Cells and Materials, 2(2), 9.

Hurley, L. A., Stinchfield, F. E., Bassett, C. A. L., & Lyon, W. H. (1959). The role of soft tissues in osteogenesis: An experimental study of canine spine fusions. JBJS, 41(7), 1243-1266.

Jane, J. L. (2006). Current understanding on starch granule structures. Journal of Applied Glycoscience, 53(3), 205-213.

Jaramillo, C. M., Gutiérrez, T. J., Goyanes, S., Bernal, C., & Famá, L. (2016). Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydrate polymers, 151, 150-159.

Karring, T., Isidor, F., Nyman, S., & Lindme, J. (1985). New attachment formation on teeth with a reduced but healthy periodontal ligament. Journal of clinical periodontology, 12(1), 51-60.

Kawabata, A., Sawayama, S., Nagashima, N., del Rosario, R. R., & Nakamura, M. (1984). Some physico-chemical properties of starches from cassava, arrowroot and sago. Journal of the Japanese Society of Starch Science, 31(4), 224-232.

Kim, M., & Lee, S. J. (2002). Characteristics of crosslinked potato starch and starch-filled linear low-density polyethylene films. Carbohydrate polymers, 50(4), 331-337.

Kohavi, D., Pollack, S. R., Brighton, G., & Bulkin, B. (1991). Surgically modelled reduced ridge in the beagle dog. Clinical oral implants research, 2(3), 145-150.

Kou, T., & Gao, Q. (2018). New insight in crosslinking degree determination for crosslinked starch. Carbohydrate research, 458, 13-18.

Linde, A., Alberius, P., Dahlin, C., Bjurstam, K., & Sundin, Y. (1993). Osteopromotion: A soft‐tissue exclusion principle using a membrane for bone healing and bone neogenesis. Journal of periodontology, 64, 1116-1128.

Menzel, C., Olsson, E., Plivelic, T. S., Andersson, R., Johansson, C., Kuktaite, R., & Koch, K. (2013). Molecular structure of citric acid cross-linked starch films. Carbohydrate polymers, 96(1), 270-276.

Moad, G. (2011). Chemical modification of starch by reactive extrusion. Progress in Polymer Science, 36(2), 218-237.

Moorthy, S. N. (2002). Physicochemical and functional properties of tropical tuber starches: a review. Starch‐Stärke, 54(12), 559-592.

Müller, C. M., Yamashita, F., & Laurindo, J. B. (2008). Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydrate Polymers, 72(1), 82-87.

Nyman, S., Linde, J., & Karring, T. (1989). Reattachment- new attachment.In: Lindhe J. Textbook of Clinical Periodontology. ed. 2 Copenhagen: Munksgard, 450-476.

Pecora, G., Baek, S. H., Rethnam, S., & Kim, S. (1997). Barrier membrane techniques in endodontic microsurgery. Dental Clinics of North America, 41(3), 585-602.

Pinheiro, J. C., da Fonseca Neto, B., da Cruz Lima, J. G., Silva, Y. A., da Silva, G. G., Morais, I. P. S., & Almeida, D. R. D. M. F. (2021). Use of biomaterials in the surgical regenerative treatment of peri-implantitis: systematic review. Research, Society and Development, 10(12), e275101220454-e275101220454.

Rengadu, D., Gerrano, A. S., & Mellem, J. J. (2020). Physicochemical and structural characterization of resistant starch isolated from Vigna unguiculata. International journal of biological macromolecules, 147, 268-275.

Rocha, T. S., Demiate, I. M., & Franco, C. M. L. (2008). Características estruturais e físico-químicas de amidos de mandioquinha-salsa (Arracacia xanthorrhiza). Food Science and Technology, 28(3), 620-628.

Rothamel, D., Schwarz, F., Sager, M., Herten, M., Sculean, A., & Becker, J. (2005). Biodegradation of differently cross‐linked collagen membranes: an experimental study in the rat. Clinical oral implants research, 16(3), 369-378.

Schwarz, F., Rothamel, D., Herten, M., Sager, M., & Becker, J. (2006). Angiogenesis pattern of native and cross‐linked collagen membranes: An immunohistochemical study in the rat. Clinical oral implants research, 17(4), 403-409.

Schwarz, F., Rothamel, D., Herten, M., Wüstefeld, M., Sager, M., Ferrari, D., & Becker, J. (2008). Immunohistochemical characterization of guided bone regeneration at a dehiscence‐type defect using different barrier membranes: an experimental study in dogs. Clinical oral implants research, 19(4), 402-415.

Shi, R., Bi, J., Zhang, Z., Zhu, A., Chen, D., Zhou, X., ... & Tian, W. (2008). The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature. Carbohydrate polymers, 74(4), 763-770.

Silva, L. S. C., Martim, S. R., Gomes, D. M. D., Prado, F. B., Marinho, N. M. V., de Amorim Silva, T., & Teixeira, M. F. S. (2021). Amazonian tuber starch based films incorporated with silver nanoparticles for preservation of fruits. Research, Society and Development, 10(6), e23510615304-e23510615304.

Singh, J., Kaur, L., & McCarthy, O. J. (2007). Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food hydrocolloids, 21(1), 1-22.

Somerman, M. J., Sauk, J. J., Foster, R. A., Norris, K., Dickerson, K., & Argraves, W. S. (1991). Cell attachment activity of cementum: bone sialoprotein _ identified in cementum. Journal of periodontal research, 26(1), 10-16.

Srinivasa, P. C., Ramesh, M. N., & Tharanathan, R. N. (2007). Effect of plasticizers and fatty acids on mechanical and permeability characteristics of chitosan films. Food hydrocolloids, 21(7), 1113-1122.

Thiebaud, S., Aburto, J., Alric, I., Borredon, E., Bikiaris, D., Prinos, J., & Panayiotou, C. (1997). Properties of fatty‐acid esters of starch and their blends with LDPE. Journal of Applied Polymer Science, 65(4), 705-721.

Warrer, K., Gotfredsen, K., Hjsrting‐hansen, E., & Karring, T. (1991). Guided tissue regeneration ensures osseointegration of dental implants placed into extraction sockets. An experimental study in monkeys. Clinical Oral Implants Research, 2(4), 166-171.

Williams, D. F. (1981). Biomaterials and biocompatibility: An introduction. In: Williams DF. Fundamental Aspects of Biocompatibility, vol 1. Boca Raton, FL: CRC Press.

Wolkers, W. F., Oliver, A. E., Tablin, F., & Crowe, J. H. (2004). A Fourier-transform infrared spectroscopy study of sugar glasses. Carbohydrate research, 339(6), 1077-1085.

Wu, H., Lei, Y., Lu, J., Zhu, R., Xiao, D., Jiao, C., ... & Li, M. (2019). Effect of citric acid induced crosslinking on the structure and properties of potato starch/chitosan composite films. Food Hydrocolloids, 97, 105208.

Zaia, D. A., Zaia, C. T. B., & Lichtig, J. (1998). Determinação de proteínas totais via espectrofometria: vantagens e desvantagens dos métodos existentes. Química nova, 21, 787-793.

Downloads

Published

12/12/2021

How to Cite

RODRIGUES, S.; FORNAZIER, M.; MAGALHÃES, D. .; RUGGIERO, R. Potential utilization of glycerol as crosslinker in starch films for application in Regenerative Dentistry. Research, Society and Development, [S. l.], v. 10, n. 16, p. e148101623640, 2021. DOI: 10.33448/rsd-v10i16.23640. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/23640. Acesso em: 20 apr. 2024.

Issue

Section

Exact and Earth Sciences