Behavior of microbial pathogens during composting process of swine carcasses

Authors

DOI:

https://doi.org/10.33448/rsd-v11i1.24774

Keywords:

Salmonella; E coli; Decomposition; Dead animals.

Abstract

The composting process is an important practice for carcasses decomposition acceleration and inactivation of potentially pathogenic microorganisms present in the material to be decomposed. However, it is necessary to evaluate proper parameters of the process. Therefore, the present study aimed to evaluate the inactivation of pathogenic microorganisms in composters built in laboratory and pilot scale for decomposition of swine carcasses. For this purpose, composters were built on laboratory and pilot scale and known concentrations of pathogenic microorganisms were added (Escherichia coli e Salmonella Senftenberg). The reduction of these microorganisms was measured until there was non-detection of viable micro-organisms. The results indicated that the pilot-scale composting, due to their dimensions, reached the ideal process conditions and eliminated the pathogens more efficiently and quickly (in 7 days, when temperature was above 60ºC). Thus, this process is a promising alternative for the disposal of swine carcasses.

References

ABPA - Associação Brasileira de Proteína Animal – Relatório anual (2020). http://abpa-br.com.br/storage/files/relatorio-anual-2020.pdf.

APHA. Standard Methods For The Examination Of Water And Wastewater. American Public Health Association, American Water Works Association, Water Environment Federation. (22a ed.), 2012.

Ajmal, M., Aiping, S., Awais, M., Ullah, M. S., Saeed, R., Uddin, S., & Zihao, X. (2020). Optimization of pilot-scale in-vessel composting process for various agricultural wastes on elevated temperature by using Taguchi technique and compost quality assessment. Process Safety and Environmental Protection, 140, 34-45.

Bhatia, A., Madan, S., Sahoo, J., Ali, M., Pathania, R., & Kazmi, A. A. (2013). Diversity of bacterial isolates during full scale rotary drum composting. Waste management, 33(7), 1595-1601.

Biswas, S., Nazmi, A., Pitesky, M., Gallardo, R., & Pandey, P. (2019). Thermal inactivation of Escherichia coli and Salmonella Typhimurium in poultry carcass and litter at thermophilic temperatures. Journal of Applied Poultry Research, 28(2), 307-317.

Chang, H. Q., Zhu, X. H., Jie, W. U., Guo, D. Y., Zhang, L. H., & Yao, F. E. N. G. (2021). Dynamics of microbial diversity during the composting of agricultural straw. Journal of Integrative Agriculture, 20(5), 1121-1136.

Cooperband, L. (2002). The art and science of composting. Center for Integrated agricultural systems. https://static1.squarespace.com/static/55848984e4b0caf8e32b24b7/t/55a9ba2de4b048cfac18595d/1437186605227/ArtScienceofComposting.pdf

Costa, T., & Akdeniz, N. (2019). A review of the animal disease outbreaks and biosecure animal mortality composting systems. Waste Management, 90, 121-131.

de Mendonça Costa, L. A., de Mendonça Costa, M. S. S., Damaceno, F. M., Chiarelotto, M., Bofinger, J., & Gazzola, W. (2021). Bioaugmentation as a strategy to improve the compost quality in the composting process of agro-industrial wastes. Environmental Technology & Innovation, 22, 101478.

Gamroth, M. J. (2012). Composting: An Alternative for livestock manure management and disposal of dead animals.

Lashermes, G., Barriuso, E., Le Villio-Poitrenaud, M., & Houot, S. (2012). Composting in small laboratory pilots: Performance and reproducibility. Waste Management, 32(2), 271-277.

Guidoni, L. L., Martins, G. A., Guevara, M. F., Brandalise, J. N., Lucia, T., Gerber, M. D., & Corrêa, É. K. (2021). Full-Scale Composting of Different Mixtures with Meal from Dead Pigs: Process Monitoring, Compost Quality and Toxicity. Waste and biomass valorization, 1-13.

Gwyther, C. L., Williams, A. P., Golyshin, P. N., Edwards-Jones, G., & Jones, D. L. (2011). The environmental and biosecurity characteristics of livestock carcass disposal methods: A review. Waste Management, 31(4), 767-778.

Lepesteur, M. (2020). Human and livestock pathogens and their control during composting. Critical Reviews in Environmental Science and Technology, 1-46.

Liang, C., Das, K. C., & McClendon, R. W. (2003). The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresource technology, 86(2), 131-137.

Masin, C. E., Fernandez, M. E., Lescano, M. R., & Zalazar, C. S. (2020). Bioconversion of agro-industrial wastes: Combined compost and vermicompost processes using Eisenia fetida for stabilization of poultry litter. International journal of recycling organic waste in agriculture, 9(2), 107-118.

Miguel, M. A., Kim, S. H., Lee, S. S., & Cho, Y. I. (2021). Impact of Soil Microbes and Oxygen Availability on Bacterial Community Structure of Decomposing Poultry Carcasses. Animals, 11(10), 2937.

Monteiro, N. F., Lima, H. M. R., da Silva, F. L., Sousa, F. D. C. A., da Silva, W. C., de Macedo Reis, L. C., & Monteiro, A. L. (2021). Atividade do óleo essencial de Eucalyptus Globulus no controle de bactérias da cavidade oral. Research, Society and Development, 10(14), e60101420387-e60101420387.

Nakasaki, K., Hirai, H., Mimoto, H., Quyen, T. N. M., Koyama, M., & Takeda, K. (2019). Succession of microbial community during vigorous organic matter degradation in the primary fermentation stage of food waste composting. Science of the Total Environment, 671, 1237-1244.

Palaniveloo, K., Amran, M. A., Norhashim, N. A., Mohamad-Fauzi, N., Peng-Hui, F., Hui-Wen, L., & Razak, S. A. (2020). Food waste composting and microbial community structure profiling. Processes, 8(6), 723.

Partanen, P., Hultman, J., Paulin, L., Auvinen, P., & Romantschuk, M. (2010). Bacterial diversity at different stages of the composting process. BMC microbiology, 10(1), 1-11.

Pepin, B., Williams, T., Polson, D., Gauger, P., & Dee, S. (2020). Survival of swine pathogens in compost formed from preprocessed carcasses. Transboundary and Emerging Diseases. 68, 2239–2249.

Ros-Chumillas, M., Garre, A., Maté, J., Palop, A., & Periago, P. M. (2017). Nanoemulsified D-limonene reduces the heat resistance of Salmonella Senftenberg over 50 times. Nanomaterials, 7(3), 65.

Wang, Y., Tang, Y., Li, M., & Yuan, Z. (2021). Aeration rate improves the compost quality of food waste and promotes the decomposition of toxic materials in leachate by changing the bacterial community. Bioresource Technology, 340, 125716.

Wilkinson, K. G. (2007). The biosecurity of on‐farm mortality composting. Journal of Applied Microbiology, 102(3), 609-618.

Published

04/01/2022

How to Cite

VIANCELLI, A.; AVILA, V. S. de .; DUARTE, S. C. .; KRABBE , E. L.; SATOMI KUCHIISHI , S. .; MICHELON, W. Behavior of microbial pathogens during composting process of swine carcasses. Research, Society and Development, [S. l.], v. 11, n. 1, p. e21011124774, 2022. DOI: 10.33448/rsd-v11i1.24774. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/24774. Acesso em: 26 apr. 2024.

Issue

Section

Agrarian and Biological Sciences