Regulated medicinal and herbal plants in brazil: heavy metal toxicity risk

Authors

DOI:

https://doi.org/10.33448/rsd-v11i1.24994

Keywords:

Heavy metals; Minerals; Toxicity; Drug trade; Brazilian Pharmacopoeia; Health surveillance.

Abstract

Medicinal plants accumulate heavy metals and metalloids in their structure and in their secondary metabolites. However, when the population consumes these plants for the treatment or prevention of different diseases without proper quality control and quantification of heavy metals, they may be exposing themselves to toxicity risks due to the ingestion of chemical elements that are above the safe limits for human consumption. This narrative review study aimed to describe the regulations relating to the control of heavy metals in medicinal plants and herbal medicines, as well as highlighting the risks of heavy metals quantified in medicinal plants with emphasis on the species included in the List of Medicinal Plants of Interest to the Unified System of Brazilian Health (RENISUS), which have Systematized Information. According to the results obtained, the Systematized Information from RENISUS does not consider the information related to heavy metals and metalloids in medicinal plants, although there are published data. In this sense, we emphasize that it is necessary to periodically monitor heavy metals and inspect medicinal plants in the form of plant drugs, in order to mitigate the vulnerability of the population that consumes these products seeking health benefits based on herbal medicine.

References

Ababneh, F. A. (2017). The Hazard Content of Cadmium, Lead, and Other Trace Elements in Some Medicinal Herbs and Their Water Infusions. International Journal of Analytical Chemistry, 2017, 1–8. https://doi.org/10.1155/2017/6971916

Abdel-Aziz S. M., Aeron A. & Kahil T. A. (2016). Health Benefits and Possible Risks of Herbal Medicine. In: Garg N., Abdel-Aziz S., Aeron A. (eds.). Microbes in Food and Health. Springer, Cham., 97-116. https://doi.org/10.1007/978-3-319-25277-3_6

Alexandre, R. F., Bagatini, F. & Simões, C. M. O. (2008). Potenciais interações entre fármacos e produtos à base de valeriana ou alho. Revista Brasileira de Farmacognosia, 18 (3), 455–463. https://doi.org/10.1590/S0102-695X2008000300021

Amin, N. U, Hussain, A., Alamzeb, S. & Begum, S. (2013). Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children, District Mardan, Pakistan. Food Chemistry, 136 (3–4), 1515–1523. https://doi.org/10.1016/j.foodchem.2012.09.058

Andreazza, R., Bortolon, L., Pieniz, S., Bento, F. M. & Camargo, F. A. O. (2015). Evaluation of two Brazilian indigenous plants for phytostabilization and phytoremediation of copper-contaminated soils. Brazilian Journal of Biology, 75 (4), 868–877. https://doi.org/10.1590/1519-6984.01914

Annan K., Dickson R. A. & Amponsah I. K. (2013). O conteúdo de metais pesados de algumas plantas medicinais selecionadas, amostradas em diferentes localizações geográficas. Pharmacognosy Research. 5 (2), 103–108. https://doi.org/10.4103/0974-8490.110539

Barreiro, E. J. & Bolzani, V. S. (2009). Biodiversidade: Fonte potencial para a descoberta de fármacos. Química Nova, 32 (3), 679–688. https://doi.org/10.1590/S0100-40422009000300012

Boojar, M. M. A. & Goodarzi, F. (2007). The copper tolerance strategies and the role of antioxidative enzymes in three plant species grown on copper mine. Chemosphere, 67 (11), 2138–2147. https://doi.org/10.1016/j.chemosphere.2006.12.071

Brandão, M. G. L., Cosenza, G. P., Pereira F. L., Vasconcelos, A. S. & Fagg, C. W. (2013). Changes in the trade in native medicinal plants in Brazilian public markets. Environmental Monitoring and Assessment, 185, 7013–7023. https://doi.org/10.1007/s10661-013-3081-y

BRASIL. (2006a). Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Básica. Política Nacional de Práticas Integrativas e Complementares no SUS - PNPIC-SUS. Retrieved from http://bvsms. saude.gov.br/bvs/publicacoes/pnpic.pdf

BRASIL. (2006b). Ministério da Saúde. Secretaria de Ciência, Tecnologia e Insumos Estratégicos. Departamento de Assistência Farmacêutica. Política Nacional de Plantas Medicinais e Fitoterápicos. Departamento de Assistência Farmacêutica. Retrieved from https://bvsms.saude.gov.br/bvs/publicacoes/politica_nacional_fitoterapicos.pdf

Brasil. (2009). Ministério da Saúde. Relação Nacional de Plantas Medicinais de Interesse ao SUS. Espécies vegetais. DAF/SCTIE/MS – RENISUS. Retrieved from https://portalarquivos2.saude.gov.br/images/pdf/2014/maio/07/renisus.pdf

BRASIL. (2014). Ministério da Saúde. Agência Nacional de Vigilância Sanitária (ANVISA). Resolução RDC n. 26, de 13 de maio de 2014. Dispões sobre o registro de medicamentos fitoterápicos e o registro e a notificação de produtos tradicionais fitoterápicos. Diário Oficial da União, Brasília, 14 mai. 2014.

BRASIL. (2019a). Ministério da Saúde. Agência Nacional de Vigilância Sanitária (ANVISA). Resolução RDC n° 301, de 21 de agosto de 2019. Dispõe sobre as Diretrizes Gerais de Boas Práticas de Fabricação de Medicamentos. Diário Oficial da União, Brasília, 22 AGO. 2019.

BRASIL. (2019b). Ministério da Saúde. Agência Nacional de Vigilância Sanitária (ANVISA). Resolução RDC nº 298, de 12 de agosto de 2019. Dispõe sobre a aprovação da Farmacopeia Brasileira, 6ª edição. Diário Oficial da União, n. 156, 14 agosto 2019.

BRASIL. (2021). Ministério da Saúde. Agência Nacional de Vigilância Sanitária (ANVISA). Resolução RDC nº 511, de 27 de maio de 2021. Dispõe sobre a admissibilidade de códigos farmacêuticos estrangeiros. Diário Oficial da União, n. 101, p. 146, 31 maio 2021.

Brima, E. (2017). Toxic Elements in Different Medicinal Plants and the Impact on Human Health. International Journal of Environmental Research and Public Health, 14 (10), 1209. https://doi.org/10.3390/ijerph14101209

Burger, A., Weidinger, M., Baumann, N., Vesely, A. & Lichtscheidl, I. (2021). The response of the accumulator plants Noccaea caerulescens, Noccaea goesingense and Plantago major towards the uranium. Journal of Environmental Radioactivity, 229–230, 106544. https://doi.org/10.1016/j.jenvrad.2021.106544

Caldas E. D. & Machado L. L. (2004). Cadmium, mercury and lead in medicinal herbs in Brazil. Food and Chemical Toxicology, 42 (4), 599–603. https://doi.org/10.1016/j.fct.2003.11.004

Caldeirão, L., Sousa, J., Nunes, L. C. G., Godoy, H. T., Fernandes, J. O. & Cunha, S. C. (2021). Herbs and herbal infusions: Determination of natural contaminants (mycotoxins and trace elements) and evaluation of their exposure. Food Research International, 144, 110322. https://doi.org/10.1016/j.foodres.2021.110322

Campos, M. M. A., Tonuci, H., Silva, S. M., S. Altoé, B., de Carvalho, D., Kronka, E. A. M., Pereira, A. M. S., Bertoni, B. W., C. França, S. & Miranda, C. E. S. (2009). Determination of lead content in medicinal plants by pre-concentration flow injection analysis-flame atomic absorption spectrometry: Determination of Lead Content in Medicinal Plants. Phytochemical Analysis, 20 (6), 445–449. https://doi.org/10.1002/pca.1145

Carvalho, A. C. B., Lana, T. N., Perfeito, J. P. S. & Silveira, D. (2018). The Brazilian market of herbal medicinal products and the impacts of the new legislation on traditional medicines. Journal of Ethnopharmacology, 212, 29–35. https://doi.org/10.1016/j.jep.2017.09.040

Chen, Z., Zhao, Y., Guo, T. & Gu, L. (2013). Accumulation and Phytoavailability of Hexachlorocyclohexane Isomers and Cadmium in Allium sativum L. Under the Stress of Hexachlorocyclohexane and Cadmium. Bulletin of Environmental Contamination and Toxicology, 90 (2), 182–187. https://doi.org/10.1007/s00128-012-0882-6

Dai, F., Luo, G., Li, Z., Wei, X., Wang, Z., Lin, S. & Tang, C. (2020). Physiological and transcriptomic analyses of mulberry (Morus atropurpurea) response to cadmium stress. Ecotoxicology and Environmental Safety, 205, 111298. https://doi.org/10.1016/j.ecoenv.2020.111298

Dai, H., Wei, S., Skuza, L. & Zhang, Q. (2021). Phytoremediation of two ecotypes cadmium hyperaccumulator Bidens pilosa L. sourced from clean soils. Chemosphere, 273, 129652. https://doi.org/10.1016/j.chemosphere.2021.129652

DalCorso, G., Fasani, E., Manara, A., Visioli, G. & Furini, A. (2019). Heavy Metal Pollutions: State of the Art and Innovation in Phytoremediation. International Journal of Molecular Sciences, 20 (14), 3412. https://doi.org/10.3390/ijms20143412

Dong, X., Ma, L. Q., Zhu, Y., Li, Y. & Gu, B. (2013). Mechanistic Investigation of Mercury Sorption by Brazilian Pepper Biochars of Different Pyrolytic Temperatures Based on X-ray Photoelectron Spectroscopy and Flow Calorimetry. Environmental Science & Technology, 47 (21), 12156–12164. https://doi.org/10.1021/es4017816

Eddouks, M., Chattopadhyay, D., De Feo, V. & Cho, W. C. (2012). Medicinal Plants in the Prevention and Treatment of Chronic Diseases. Evidence-Based Complementary and Alternative Medicine, 2012, 1–2. https://doi.org/10.1155/2012/458274

Esbrí, J. M., Cacovean, H. & Higueras, P. (2018). Usage Proposal of a common urban decorative tree (Salix alba L.) to monitor the dispersion of gaseous mercury: A case study from Turda (Romania). Chemosphere, 193, 74–81. https://doi.org/10.1016/j.chemosphere.2017.11.007

Faggioli, V., Menoyo, E., Geml, J., Kemppainen, M., Pardo, A., Salazar, M. J. & Becerra, A. G. (2019). Soil lead pollution modifies the structure of arbuscular mycorrhizal fungal communities. Mycorrhiza, 29 (4), 363–373. https://doi.org/10.1007/s00572-019-00895-1

Freitas, M. S. M., Monnerat, P. H., Vieira, I. J. C. & De Carvalho, A. J. C. (2007). Flavonóides e composição mineral de folhas de maracujazeiro amarelo em função da posição da folha no ramo. Ciência Rural, 37 (6), 1634–1639. https://doi.org/10.1590/S0103-84782007000600020

Gomes D. A. S., Alves J. P. S., Silva E. G. P., Novaes C. G., Silva D. S. & Aguiar R. M. (2019). Evaluation of metal content in tea samples commercialized in sachets using multivariate data analysis techniques. Microchemical Journal, 151, 104248. https://doi.org/10.1016/j.microc.2019.104248

Goswami, S. & Das, S. (2016). Copper phytoremediation potential of Calendula officinalis L. and the role of antioxidant enzymes in metal tolerance. Ecotoxicology and Environmental Safety, 126, 211–218. https://doi.org/10.1016/j.ecoenv.2015.12.030

Gucwa-Przepióra, E., Nadgórska-Socha, A., Fojcik, B. & Chmura, D. (2016). Enzymatic activities and arbuscular mycorrhizal colonization of Plantago lanceolata and Plantago major in a soil root zone under heavy metal stress. Environmental Science and Pollution Research, 23 (5), 4742–4755. https://doi.org/10.1007/s11356-015-5695-9

Ibrahim, A. M. (2014). Determination of some mineral and heavy metals in Saudi Arabia popular herbal drugs using modern techniques. African Journal of Pharmacy and Pharmacology, 8 (36), 893–898. https://doi.org/10.5897/AJPP12.1455

Ichim, M. C., Häser, A. & Nick, P. (2020). Microscopic Authentication of Commercial Herbal Products in the Globalized Market: Potential and Limitations. Frontiers in Pharmacology, 11, 876. https://doi.org/10.3389/fphar.2020.00876

Iser, B. P. M., Sliva, I., Raymundo, V. T., Poleto, M. B., Schuelter-Trevisol, F., Bobinski, F. (2020). Definição de caso suspeito da COVID-19: uma revisão narrativa dos sinais e sintomas mais frequentes entre os casos confirmados. Epidemiologia e Serviços de Saúde, 29 (3), e2020233. https://doi.org/10.5123/S1679-49742020000300018

Ji, Y., Wu, P., Zhang, J., Zhang, J., Zhou, Y., Peng, Y., Zhang, S., Cai, G. & Gao, G. (2018). Heavy metal accumulation, risk assessment and integrated biomarker responses of local vegetables: A case study along the Le’an river. Chemosphere, 199, 361–371. https://doi.org/10.1016/j.chemosphere.2018.02.045

Jiang, Y., Jiang, S., Huang, R., Wang, M., Cao, H. & Li, Z. (2021). Accumulation of Cd by three forage mulberry (Morus atropurpurea Roxb.) cultivars in heavy metal–polluted farmland: A field experiment. Environmental Science and Pollution Research, 28 (3), 3354–3360. https://doi.org/10.1007/s11356-020-10744-w

Khair, K. U., Farid, M., Ashraf, U., Zubair, M., Rizwan, M., Farid, S., Ishaq, H. K., Iftikhar, U. & Ali, S. (2020). Citric acid enhanced phytoextraction of nickel (Ni) and alleviate Mentha piperita (L.) from Ni-induced physiological and biochemical damages. Environmental Science and Pollution Research, 27 (21), 27010–27022. https://doi.org/10.1007/s11356-020-08978-9

Khan, N., Jamila, N., Amin, F., Masood, R., Atlas, A., Khan, W., Ain, N. U. & Khan, S. N. (2021). Quantification of macro, micro and trace elements, and antimicrobial activity of medicinal herbs and their products. Arabian Journal of Chemistry, 14 (4), 103055. https://doi.org/10.1016/j.arabjc.2021.103055.

Kohzadi S., Shahmoradi B., Ghaderi E., Loqmani H. & Maleki A. (2019). Concentration, Source, and Potential Human Health Risk of Heavy Metals in the Commonly Consumed Medicinal Plants. Biological Trace Element Research, 187 (1), 41–50. https://doi.org/10.1007/s12011-018-1357-3

Kong D., Li X., Yao J., He Y., Luo J. & Yang M. (2020). Health risk assessment and bioaccessibility of toxic elements in edible and medicinal plants under different consumption methods, Microchemical Journal, 159 (6), 105577. https://doi.org/10.1016/j.microc.2020.105577.

Kuki, K. N., Oliva, M. A. & Pereira, E. G. (2008). Iron Ore Industry Emissions as a Potential Ecological Risk Factor for Tropical Coastal Vegetation. Environmental Management, 42 (1), 111–121. https://doi.org/10.1007/s00267-008-9093-7

Leal, A. S., Prado, G., Gomes, T. C. B., Sepe, F. P. & Dalmázio, I. (2013). Determination of metals in medicinal plants highly consumed in Brazil. Brazilian Journal of Pharmaceutical Sciences, 49 (3), 599–607. https://doi.org/10.1590/S1984-82502013000300022

Leite P. M., Camargos L. M. & Castilho R. O. (2021). Recent progess in phytotherapy: A Brazilian perspective. European Journal of Integrative Medicine, 41, 101270. https://doi.org/10.1016/j.eujim.2020.101270

Lindh, U. (2013). Biological functions of the elements. In: Selinus O. (eds.). Essentials of Medical Geology: revised edition. Springer Dordrecht, 129-177. https://doi.org/10.1007/978-94-007-4375-5_7

Liu, D., Zou, J., Meng, Q., Zou, J. & Jiang, W. (2009). Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity. Ecotoxicology, 18 (1), 134–143. https://doi.org/10.1007/s10646-008-0266-1

Liu, J., Zhou, Q., Sun, T., Ma, L. Q., & Wang, S. (2008). Growth responses of three ornamental plants to Cd and Cd–Pb stress and their metal accumulation characteristics. Journal of Hazardous Materials, 151 (1), 261–267. https://doi.org/10.1016/j.jhazmat.2007.08.016

Luo, J., Qi, S., Peng, L., & Xie, X. (2015). Phytoremediation Potential of Cadmium-Contaminated Soil by Eucalyptus globulus Under Different Coppice Systems. Bulletin of Environmental Contamination and Toxicology, 94 (3), 321–325. https://doi.org/10.1007/s00128-014-1450-z

Luo, J., Yang, D., Qi, S., Wu, J., & Gu, X. S. (2018). Using solar cell to phytoremediate field-scale metal polluted soil assisted by electric field. Ecotoxicology and Environmental Safety, 165, 404–410. https://doi.org/10.1016/j.ecoenv.2018.09.031

Mahmood, N., Nazir, R., Khan, M., Khaliq, A., Adnan, M., Ullah, M. & Yang, H. (2019). Antibacterial Activities, Phytochemical Screening and Metal Analysis of Medicinal Plants: Traditional Recipes Used against Diarrhea. Antibiotics, 8 (4), 194. https://doi.org/10.3390/antibiotics8040194

Malizia, D., Giuliano, A., Ortaggi, G. & Masotti, A. (2012). Common plants as alternative analytical tools to monitor heavy metals in soil. Chemistry Central Journal, 6 (S2), S6. https://doi.org/10.1186/1752-153X-6-S2-S6

Mamani, M. C. V., Aleixo, L. M., Abreu, M. F. & Rath, S. (2005). Simultaneous determination of cadmium and lead in medicinal plants by anodic stripping voltammetry. Journal of Pharmaceutical and Biomedical Analysis, 37 (4), 709–713. https://doi.org/10.1016/j.jpba.2004.11.049

Martín-Domingo M. C., Pla A., Hernández A. F., Olmedo P., Navas-Acien A., Lozano-Paniagua D. & Gil F. (2017). Determination of metalloid, metallic and mineral elements in herbal teas. Risk assessment for the consumers. Journal of Food Composition and Analysis, 60, 81–89. https://doi.org/10.1016/j.jfca.2017.03.009

Matos Reyes, M. N., Cervera, M. L. & de la Guardia, M. (2009). Determination of total Sb, Se, Te, and Bi and evaluation of their inorganic species in garlic by hydride-generation–atomic-fluorescence spectrometry. Analytical and Bioanalytical Chemistry, 394 (6), 1557–1562. https://doi.org/10.1007/s00216-009-2713-0

Meng, C., Wang, P., Hao, Z., Gao, Z., Li, Q., Gao, H., Liu, Y., Li, Q., Wang, Q. & Feng, F. (2021). Ecological and health risk assessment of heavy metals in soil and Chinese herbal medicines. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-021-00978-z

Meos, A., Jüriado, T., Matto, V. & Raal, A. (2011). Lead Content in Pot Marigold (Calendula officinalis L.) Inflorescences and Leaves: Impact of Precipitations and Vicinity of Motorway. Biological Trace Element Research, 140 (2), 244–251. https://doi.org/10.1007/s12011-010-8689-y

Meseret, M., Ketema, G. & Kassahun, H. (2020). Health Risk Assessment and Determination of Some Heavy Metals in Commonly Consumed Traditional Herbal Preparations in Northeast Ethiopia. Journal of Chemistry, 2020, 1–7. https://doi.org/10.1155/2020/8883837

Messaoudi M. & Begaa S. (2018). Application of INAA technique for analysis of essential trace and toxic elements in medicinal seeds of Carum carvi L. & Foeniculum vul-gare Mill. used in Algeria. Journal of Applied Research on Medicinal and Aromatic Plants, 9, 39-45. https://doi.org/10.1016/j.jarmap.2018.01.001.

Milani, R. F., Silvestre, L. K., Morgano, M. A. & Cadore, S. (2019). Investigation of twelve trace elements in herbal tea commercialized in Brazil. Journal of Trace Elements in Medicine and Biology, 52, 111–117. https://doi.org/10.1016/j.jtemb.2018.12.004

Mirosławski J. & Paukszto A. (2018). Determination of the Cadmium, Chromium, Nickel, and Lead Ions Relays in Selected Polish Medicinal Plants and Their Infusion. Biological Trace Element Research, 182, 147–151. https://doi.org/10.1007/s12011-017-1072-5

Moghaddam, M., Mehdizadeh, L. & Sharifi, Z. (2020). Macro- and microelement content and health risk assessment of heavy metals in various herbs of Iran. Environmental Science and Pollution Research, 27 (11), 12320–12331. https://doi.org/10.1007/s11356-020-07789-2

Mogwasi, R., Zor, S., Kariuki, D. K., Getenga, M. Z. & Nischwitz, V. (2018). Sequential Extraction as Novel Approach to Compare 12 Medicinal Plants From Kenya Regarding Their Potential to Release Chromium, Manganese, Copper, and Zinc. Biological Trace Element Research, 182 (2), 407–422. https://doi.org/10.1007/s12011-017-1083-2

Montiel-Rozas, M. M., Madejón, E. & Madejón, P. (2016). Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination. Environmental Pollution, 216, 273–281. https://doi.org/10.1016/j.envpol.2016.05.080

Mousavi, Z., Ziarati, P., Dehaghi, M. E. & Qomi, M. (2013). Heavy Metals (Lead and Cadmium) in some Medicinal Herbal Products in Iranian Market. Iranian Journal of Toxicology, 8 (24), 1004-1010.

Nema, N. K., Maity, N., Sarkar, B. K. & Mukherjee, P. K. (2014). Determination of trace and heavy metals in some commonly used medicinal herbs in Ayurveda. Toxicology and Industrial Health, 30 (10), 964–968. https://doi.org/10.1177/0748233712468015

Neves, N. R., Oliva, M. A., Cruz Centeno, D., Costa, A. C., Ribas, R. F., & Pereira, E. G. (2009). Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: Potential use in environmental risk assessment. Science of The Total Environment, 407 (12), 3740–3745. https://doi.org/10.1016/j.scitotenv.2009.02.035

Nies, D. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51, 730–750. https://doi.org/10.1007/s002530051457

Nkeiruka I. Z. , Ebere O. O. & Obianime A. W. (2012). Nigerian herbal remedies and heavy metals: violation of standard recommended guidelines. Asian Pacific Journal of Tropical Biomedicine, 2 (3), S1423–30. https://doi.org/10.1016/S2221-1691(12)60430-4.

Novaes, C. G., Romão, I. L. S., Santos, B. G., Ribeiro, J. P., Bezerra, M. A. & Silva, E. G. P. (2017). Screening of Passiflora L. mineral content using principal component analysis and Kohonen self-organizing maps. Food Chemistry, 233, 507–513. https://doi.org/10.1016/j.foodchem.2017.04.111

Olajire, A. A. & Ayodele, E. T. (2003). Study of atmospheric pollution levels by trace elements analysis of tree bark and leaves. Bulletin of the Chemical Society of Ethiopia, 17 (1). https://doi.org/10.4314/bcse.v17i1.61724

Oliveira J. P. B, Lopes J. C., Alexandre R. S., Jasper A. P. S., Santos L. N. S. & Oliveira L. B. (2009). Concentração de metais pesados em plantas de maracujá doce cultivadas em dois solos tratados com lodo de esgoto. Engenharia Ambiental - Espírito Santo do Pinhal, 6 (2), 217-223.

Onyele, O. G. & Anyanwu, E. D. (2018). Human health risk assessment of some heavy metals in a rural spring, southeastern Nigeria. African Journal of Environment and Natural Science Research, 1 (1), 15-23.

Pace, R., Liberati, D., Sconocchia, P. & De Angelis, P. (2020). Lead transfer into the vegetation layer growing naturally in a Pb-contaminated site. Environmental Geochemistry and Health, 42 (8), 2321–2329. https://doi.org/10.1007/s10653-019-00429-w

Palhares, R. M., Baratto, L. C., Scopel, M., Mügge, F. L. B. & Brandão, M. G. L. (2021). Medicinal Plants and Herbal Products From Brazil: How Can We Improve Quality? Frontiers in Pharmacology, 11, 606623. https://doi.org/10.3389/fphar.2020.606623

Patel, A. & Patra, D. D. (2014). Influence of heavy metal rich tannery sludge on soil enzymes vis-à-vis growth of Tagetes minuta, an essential oil bearing crop. Chemosphere, 112, 323-332. https://doi.org/10.1016/j.chemosphere.2014.04.063

Pietrini, F., Zacchini, M., Iori, V., Pietrosanti, L., Ferretti, M. & Massacci, A. Spatial distribution of cadmium in leaves and its impact on photosynthesis: examples of different strategies in willow and poplar clones. Plant Biology, 12 (2), 355-363. https://doi.org/10.1111/j.1438-8677.2009.00258.x

Raczuk, J., Biardzka, E. & Daruk, J. (2008). The content of Ca, Mg, Fe and Cu in selected species of herbs and herb infusions. Rocz Panstw Zakl Hig, 59 (1), 33-40.

Ražić, S. & Đogo, S. (2010). Determination of chromium in Mentha piperita L. and soil by graphite furnace atomic absorption spectrometry after sequential extraction and microwave-assisted acid digestion to assess potential bioavailability. Chemosphere, 78 (4), 451–456. https://doi.org/10.1016/j.chemosphere.2009.10.028

Ribeiro, L. H. L. (2019). Análise dos programas de plantas medicinais e fitoterápicos no Sistema Único de Saúde (SUS) sob a perspectiva territorial. Ciência & Saúde Coletiva, 24 (5), 1733–1742. https://doi.org/10.1590/1413-81232018245.15842017

Rivera-Becerril, F., Juárez-Vázquez, L. V., Hernández-Cervantes, S. C., Acevedo-Sandoval, O. A., Vela-Correa, G., Cruz-Chávez, E., Moreno-Espíndola, I. P., Esquivel-Herrera, A. & León-González, F. (2013). Impacts of Manganese Mining Activity on the Environment: Interactions Among Soil, Plants, and Arbuscular Mycorrhiza. Archives of Environmental Contamination and Toxicology, 64 (2), 219–227. https://doi.org/10.1007/s00244-012-9827-7

Rocha, L. S., Arakaki, D. G., Bogo, D., Melo, E. S. P., Lima, N. V., Souza, I. D., Garrison-Engbrecht, A. J., Guimarães, R. C. A. & Nascimento, V. A. (2019). Evaluation of Level of Essential Elements and Toxic Metal in the Medicinal Plant Hymenaea martiana Hayne (Jatobá) Used by Mid-West Population of Brazil. The Scientific World Journal, 2019, 1–7. https://doi.org/10.1155/2019/4806068

Salazar, M. J., Rodriguez, J. H., Cid, C. V. & Pignata, M. L. (2016). Auxin effects on Pb phytoextraction from polluted soils by Tegetes minuta L. and Bidens pilosa L.: Extractive power of their root exudates. Journal of Hazardous Materials, 311, 63–69. https://doi.org/10.1016/j.jhazmat.2016.02.053

Santos Júnior, A. F., Matos, R. A., Andrade, E. M. J., Dos Santos, W. N. L., Magalhães, H. I. F., Costa, F. N. & Korn, M. G. A. (2016). Multielement Determination of Macro and Micro Contents in Medicinal Plants and Phytomedicines from Brazil by ICP OES. Journal of the Brazilian Chemical Society, 18 (2), 376-384. https://doi.org/10.5935/0103-5053.20160187

Santos L. C. W., Arakaki D. G., Melo, E. S. P. & Nascimento V. A. (2021). Health Hazard Assessment Due to Slimming Medicinal Plant Intake. Biological Trace Element Research. https://doi.org/10.1007/s12011-021-02732-z

Sebastian, P., Mihaela, O., Anca, S. & Tiberiu, R. (2016). Chromium: toxicity and tolerance in plants. A review. Ecoterra - Journal of Environmental Research and Protection, 13 (4), 13-18.

Seddigi, Z. S., Kandhro, G. A., Shah, F., Danish, E. & Soylak, M. (2016). Assessment of metal contents in spices and herbs from Saudi Arabia. Toxicology and Industrial Health, 32 (2), 260–269. https://doi.org/10.1177/0748233713500822

Sharifi, P., Bidabadi, S. S., Zaid, A. & Abdel Latef, A. A. H. (2021). Efficacy of multi-walled carbon nanotubes in regulating growth performance, total glutathione and redox state of Calendula officinalis L. cultivated on Pb and Cd polluted soil. Ecotoxicology and Environmental Safety, 213, 112051. https://doi.org/10.1016/j.ecoenv.2021.112051

Sharma, P., Yadav, P., Ghosh, C., & Singh, B. (2020). Heavy metal capture from the suspended particulate matter by Morus alba and evidence of foliar uptake and translocation of PM associated zinc using radiotracer (65Zn). Chemosphere, 254, 126863. https://doi.org/10.1016/j.chemosphere.2020.126863

Si, L., Peng, X., & Zhou, J. (2019). The suitability of growing mulberry (Morus alba L.) on soils consisting of urban sludge composted with garden waste: A new method for urban sludge disposal. Environmental Science and Pollution Research, 26 (2), 1379–1393. https://doi.org/10.1007/s11356-018-3635-1

Silva, L. C., Araújo, T. O., Martinez, C. A., Almeida Lobo, F., Azevedo, A. A. & Oliva, M. A. (2015). Differential responses of C3 and CAM native Brazilian plant species to a SO2- and SPMFe-contaminated Restinga. Environmental Science and Pollution Research, 22 (18), 14007–14017. https://doi.org/10.1007/s11356-015-4391-0

Silva, P. S. C., Francisconi, L. S. & Gonçalves, R. D. M. R. (2016). Evaluation of Major and Trace Elements in Medicinal Plants. Journal of the Brazilian Chemical Society, 27 (12), 2273-2289.. https://doi.org/10.5935/0103-5053.20160123

Silveira, P. F., Bandeira, M. A. M. & Arrais, P. S. D. (2008). Farmacovigilância e reações adversas às plantas medicinais e fitoterápicos: Uma realidade. Revista Brasileira de Farmacognosia, 18 (4), 618–626. https://doi.org/10.1590/S0102-695X2008000400021

Solidum, J. N. (2014). Lead Levels in Fresh Medicinal Herbs and Commercial Tea Products from Manila, Philippines. APCBEE Procedia, 10, 281–285. https://doi.org/10.1016/j.apcbee.2014.10.053

Subramanian, R., Gayathri, S., Rathnavel, C. & Raj, V. (2012). Analysis of mineral and heavy metals in some medicinal plants collected from local market. Asian Pacific Journal of Tropical Biomedicine, 2 (1), S74-S78. https://doi.org/10.1016/S2221-1691(12)60133-6

Souza, I. D., Melo, E. S. P., Nascimento, V. A., Pereira, H. S., Silva, K. R. N., Espindola, P. R., Tschinkel, P. F. S., Ramos, E. M., Reis, F. J. M., Ramos, I. B., Paula, F. G., Oliveira, K. R. W., Lima, C. D., Nunes, Â. A. & Nascimento, V. A. (2021). Potential Health Risks of Macro- and Microelements in Commercial Medicinal Plants Used to Treatment of Diabetes. BioMed Research International, 2021, 1–11. https://doi.org/10.1155/2021/6678931

Sun, Y., Zhou, Q., Liu, W., An, J., Xu, Z. Q. & Wang, L. (2009). Joint effects of arsenic and cadmium on plant growth and metal bioaccumulation: A potential Cd-hyperaccumulator and As-excluder Bidens pilosa L. Journal of Hazardous Materials, 165 (1–3), 1023–1028. https://doi.org/10.1016/j.jhazmat.2008.10.097

Tannus, C. A., Souza Dias, F., Santana, F. B., Santos, D. C. M. B., Magalhães, H. I. F., Souza Dias, F. & Santos Júnior, A. F. (2021). Multielement Determination in Medicinal Plants and Herbal Medicines Containing Cynara scolymus L., Harpagophytum procumbens D.C., and Maytenus ilifolia (Mart.) ex Reiss from Brazil Using ICP OES. Biological Trace Element Research, 199 (6), 2330–2341. https://doi.org/10.1007/s12011-020-02334-1

Touati, M., Bottega, S., Ruffini Castiglione, M., Sorce, C., Béjaoui, Z. & Spanò, C. (2019). Modulation of the defence responses against Cd in willow species through a multifaceted analysis. Plant Physiology and Biochemistry, 142, 125–136. https://doi.org/10.1016/j.plaphy.2019.07.005

Tschinkel, P. F. S., Melo, E. S. P., Pereira, H. S., Silva, K. R. N., Arakaki, D. G., Lima, N. V., Fernandes, M. R., Leite, L. C. S., Melo, E. S. P., Melnikov, P., Espindola, P. R., de Souza, I. D., Nascimento, V. A., Júnior, J. L. R., Geronimo, A. C. R., dos Reis, F. J. M. & Nascimento, V. A. (2020). The Hazardous Level of Heavy Metals in Different Medicinal Plants and Their Decoctions in Water: A Public Health Problem in Brazil. BioMed Research International, 2020, 1–11. https://doi.org/10.1155/2020/1465051

U.S. Pharmacopeia (USP). (2017). Official from December 1, 2017, Copyright (c) 2017 -e United States. Pharmacopeia Convention.

Vaverková, M. D., Elbl, J., Radziemska, M., Adamcová, D., Kintl, A., Baláková, L., Bartoň, S., Hladký, J., Kynický, J., & Brtnický, M. (2018). Environmental risk assessment and consequences of municipal solid waste disposal. Chemosphere, 208, 569–578. https://doi.org/10.1016/j.chemosphere.2018.06.026

Vergara Cid, C., Pignata, M. L. & Rodriguez, J. H. (2020). Effects of co-cropping on soybean growth and stress response in lead-polluted soils. Chemosphere, 246, 125833. https://doi.org/10.1016/j.chemosphere.2020.125833

World Health Organization (WHO). (2007). Guidelines for assessing quality of herbal medicines with reference to contaminants and residues. 105.

World Health Organization (WHO). (2019). Global Report on Traditional and Complementary Medicine. 228.

Yang, L., Meng, L., Gao, H., Wang, J., Zhao, C., Guo, M., He, Y. & Huang, L. (2021). Building a stable and accurate model for heavy metal detection in mulberry leaves based on a proposed analysis framework and laser-induced breakdown spectroscopy. Food Chemistry, 338, 127886. https://doi.org/10.1016/j.foodchem.2020.127886

Zárate-Quiñones, R. H., Custodio, M., Orellana-Mendoza, E., Cuadrado-Campó, W. J., Grijalva-Aroni, P. L. & Peñaloza, R. (2021). Determination of toxic metals in commonly consumed medicinal plants largely used in Peru by ICP-MS and their impact on human health. Chemical Data Collections, 33, 100711. https://doi.org/10.1016/j.cdc.2021.100711

Zeiner, M. & Cindrić, I. J. (2017). Review – trace determination of potentially toxic elements in (medicinal) plant materials. Anal Methods, 9 (10), 1550–74. https://doi.org/10.1039/C7AY00016B.

Zheljazkov, V. D. & Warman, P. R. (2004). Application of High-Cu Compost to Dill and Peppermint. Journal of Agricultural and Food Chemistry, 52 (9), 2615–2622. https://doi.org/10.1021/jf035137y

Zhu, H., Wang, W., Wang, X., Pan, G., Zhu, Y. & Feng, Y. (2021). The toxicity and safety of Chinese medicine from the bench to the bedside. Journal of Herbal Medicine, 28, 100450. https://doi.org/10.1016/j.hermed.2021.100450

Zinicovscaia, I., Gundorina, S., Vergel, K., Grozdov, D., Ciocarlan, A., Aricu, A., Dragalin, I. & Ciocarlan, N. (2020). Elemental analysis of Lamiaceae medicinal and aromatic plants growing in the Republic of Moldova using neutron activation analysis. Phytochemistry Letters, 35, 119-127. https://doi.org/10.1016/j.phytol.2019.10.009.

Zinsaz, N., Mahernia, S., Bagherzadeh, K., Dadrass, O. G., & Amanlou, M. (2015). Determination of heavy metals (cadmium, lead, copper) in herbal syrups by polarography. Journal of Chemical and Pharmaceutical Research, 7 (8), 28-31.

Published

09/01/2022

How to Cite

ALVES JUNIOR, A. da S.; MELO, E. S. de P.; GONDIM, J. M. da S. .; NASCIMENTO, V. A. do. Regulated medicinal and herbal plants in brazil: heavy metal toxicity risk . Research, Society and Development, [S. l.], v. 11, n. 1, p. e39111124994, 2022. DOI: 10.33448/rsd-v11i1.24994. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/24994. Acesso em: 19 apr. 2024.

Issue

Section

Health Sciences